Transport Equation Reduction for a Mathematical Model in Plant Growth
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 2, pp. 160-172.

Voir la notice de l'article provenant de la source EDP Sciences

In this article a variational reduction method, how to handle the case of heterogenous domains for the Transport equation, is presented. This method allows to get rid of the restrictions on the size of time steps due to the thin parts of the domain. In the thin part of the domain, only a differential problem, with respect to the space variable, is to be approximated numerically. Numerical results are presented with a simple example. The variational reduction method can be extended to thin domains multi-branching in 3 dimensions, which is a work in progress.
DOI : 10.1051/mmnp/20116206

S. Boujena 1 ; A. Chiboub 1 ; J. Pousin 2

1 Department of Mathematics and computing, Hassan II University, Sciences Faculty, POB 5366 Maarif, Casablanca, Morocco
2 Université de Lyon, INSA de Lyon, ICJ UMR CNRS 5028, 69100 Villeurbanne cedex France
@article{MMNP_2011_6_2_a5,
     author = {S. Boujena and A. Chiboub and J. Pousin},
     title = {Transport {Equation} {Reduction} for a {Mathematical} {Model} in {Plant} {Growth}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {160--172},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2011},
     doi = {10.1051/mmnp/20116206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116206/}
}
TY  - JOUR
AU  - S. Boujena
AU  - A. Chiboub
AU  - J. Pousin
TI  - Transport Equation Reduction for a Mathematical Model in Plant Growth
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 160
EP  - 172
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116206/
DO  - 10.1051/mmnp/20116206
LA  - en
ID  - MMNP_2011_6_2_a5
ER  - 
%0 Journal Article
%A S. Boujena
%A A. Chiboub
%A J. Pousin
%T Transport Equation Reduction for a Mathematical Model in Plant Growth
%J Mathematical modelling of natural phenomena
%D 2011
%P 160-172
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116206/
%R 10.1051/mmnp/20116206
%G en
%F MMNP_2011_6_2_a5
S. Boujena; A. Chiboub; J. Pousin. Transport Equation Reduction for a Mathematical Model in Plant Growth. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 2, pp. 160-172. doi : 10.1051/mmnp/20116206. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116206/

[1] O. Besson, J. Pousin. Solution for Linear Conservation Laws with velocity in L∞. Archive for Rational Mechanics and Analysis, 2007.

[2] S. Boujena , A. Chiboub, J. Pousin. Variational reduction for the transport equation in a multiple branching plant growth model. Congrès International JANO 9 , 9emes journée d’Analyse Numérique et d’Optimisation. Mohammedia, Maroc, 2008.

[3] S. Boujena, A. Chiboub, J. Pousin Variational reduction for the transport equation in a multiple branching plant growth model Mathematical Modelling of Natural Phenomena 11 15

[4] N. Bessonov, V. Volpert. Dynamic models of plant growth, Mathematics and mathematical modeling. Publibook, Paris, 2007.

[5] M. Crouzeix, L. Mignot. Analyse numérique des équations différentielles. Masson, Paris, 1996.

[6] F. Fontvieille, Décomposition asymptôtique et éléments finis. Thèse de doctorat, université Claude Bernard- Lyon I, 2004.

[7] F. Fontvieille, G. Panasenko, J. Pousin FEM implementation for the asymptotic partial decomposition Applicable Analysis 2007 519 536

[8] G.P. Panasenko. Multi-scale Modelling for structures and composites. Springer Verlag, 2005.

[9] G.P. Panasenko Method of asymptotic partial decomposition of domain Math. Models and Methods in Appl. Sci. 1998 139 156

[10] M. Picq, J. Pousin. Variational reduction for the transport equation and plants growth. In Proccedings of the Conference Modelling of the Heterogeneous Materials with Applications in Constructions and Biological Engineering. Czech Technical University Prague, 2007.

Cité par Sources :