On the Origin of Chaos in the Belousov-Zhabotinsky Reaction in Closed and Unstirred Reactors
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 226-242.

Voir la notice de l'article provenant de la source EDP Sciences

We investigate the origin of deterministic chaos in the Belousov–Zhabotinsky (BZ) reaction carried out in closed and unstirred reactors (CURs). In detail, we develop a model on the idea that hydrodynamic instabilities play a driving role in the transition to chaotic dynamics. A set of partial differential equations were derived by coupling the two variable Oregonator–diffusion system to the Navier–Stokes equations. This approach allows us to shed light on the correlation between chemical oscillations and spatial–temporal dynamics. In particular, numerical solutions to the corresponding reaction-diffusion-convection (RDC) problem show that natural convection can change the evolution of the concentration distribution as well as oscillation patterns. The results suggest a new way of perceiving the BZ reaction when it is conducted in CURs. In conflict with the common experience, chemical oscillations are no longer a mere chemical process. Within this framework the evolution of all dynamical observables are demonstrated to converge to the regime imposed by the RDC coupling: chemical and spatial–temporal chaos are genuine manifestations of the same phenomenon.
DOI : 10.1051/mmnp/20116112

M. A. Budroni 1 ; M. Rustici 2 ; E. Tiezzi 1

1 Dipartimento di Chimica Università di Siena, Via della Diana 2a, 53100 Siena, Italy
2 Dipartimento di Chimica Università di Sassari and INSTM, Via Vienna 2, 07100 Sassari, Italy
@article{MMNP_2011_6_1_a12,
     author = {M. A. Budroni and M. Rustici and E. Tiezzi},
     title = {On the {Origin} of {Chaos} in the {Belousov-Zhabotinsky} {Reaction} in {Closed} and {Unstirred} {Reactors}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {226--242},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116112/}
}
TY  - JOUR
AU  - M. A. Budroni
AU  - M. Rustici
AU  - E. Tiezzi
TI  - On the Origin of Chaos in the Belousov-Zhabotinsky Reaction in Closed and Unstirred Reactors
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 226
EP  - 242
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116112/
DO  - 10.1051/mmnp/20116112
LA  - en
ID  - MMNP_2011_6_1_a12
ER  - 
%0 Journal Article
%A M. A. Budroni
%A M. Rustici
%A E. Tiezzi
%T On the Origin of Chaos in the Belousov-Zhabotinsky Reaction in Closed and Unstirred Reactors
%J Mathematical modelling of natural phenomena
%D 2011
%P 226-242
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116112/
%R 10.1051/mmnp/20116112
%G en
%F MMNP_2011_6_1_a12
M. A. Budroni; M. Rustici; E. Tiezzi. On the Origin of Chaos in the Belousov-Zhabotinsky Reaction in Closed and Unstirred Reactors. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 226-242. doi : 10.1051/mmnp/20116112. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116112/

[1] A. M. Zhabotinsky Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics) Biofizika 1964 306 11

[2] S. K. Scott. Chemical Chaos. Oxford University Press, Oxford, 1993.

[3] G. Biosa, M. Masia, N. Marchettini, M. Rustici A ternary nonequilibrium phase diagram for a closed unstirred Belousov–Zhabotinsky system Chem. Phys. 2005 7 12

[4] M. Masia, N. Marchettini, V. Zambrano, M. Rustici Effect of temperature in a closed unstirred Belousovâ-Zhabotinsky system Chem. Phys. Lett. 2001 285 291

[5] M. Rustici, M. Branca, C. Caravati, E. Petretto, N. Marchettini Transition scenarios during the evolution of the Belousov-Zhabotinsky reaction in an unstirred batch reactor J. Phys. Chem. 1999 6564 6570

[6] F. Rossi, M. A. Budroni, N. Marchettini, L. Cutietta, M. Rustici, M. L. Turco Liveri Chaotic dynamics in an unstirred ferroin catalyzed Belousov–Zhabotinsky reaction Chem. Phys. Lett. 2009 322 326

[7] M. C. Cross, P. C. Hohenemberg Pattern formation outside of equilibrium Rev. Mod. Phys. 1993 851 1124

[8] A. Abramian, S. Vakulenko, V. Volpert (Eds). Patterns and waves. AkademPrint, Saint Petersburg, 2003.

[9] Y. Wu, D. A. Vasquez, B. F. Edwards, J. W. Wilder Convective chemical–wave propagation in the Belousov–Zhabotinsky reaction Phys. Rev. E 1995 1119 1127

[10] J. W. Wilder, B. F. Edwards, D. A. Vasquez Finite thermal diffusivity at the onset of convection in autocatalytic systems: Continuous fluid density Phys. Rev. A 1992 2320 2327

[11] K. I. Agladze, V. I. Krinsky, A. M. Pertsov Chaos in the non–stirred Belousov–Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures Nature 1984 834 835

[12] N. Marchettini, M. Rustici Effect of medium viscosity in a closed unstirred Belousovâ-Zhabotinsky system Chem. Phys. Lett. 2000 647 651

[13] F. Rossi, F. Pulselli, E. Tiezzi, S. Bastianoni, M. Rustici Effects of the electrolytes in a closed unstirred Belousov-Zhabotinsky medium Chem. Phys. 2005 101 106

[14] M. L. Turco Liveri, R. Lombardo, M. Masia, G. Calvaruso, M. Rustici Role of the Reactor Geometry in the Onset of Transient Chaos in an Unstirred Belousov-Zhabotinsky System J. Phys. Chem. A 2003 4834 4837

[15] R. Kapral, K. Showalter. Chemical waves and patterns. Kluwer Academic Publisher, Dordrecht/Boston/London, 1995.

[16] K. A. Cliffe, S. J. Taverner, H. Wilke Convective effects on a propagating reaction front Phys. Fluids 1998 730 741

[17] R. J. Field, M. Burger. Oscillations and travelling waves in chemical systems. Wiley, New York, 1985.

[18] J. A. Pojman, I. Epstein Convective effects on chemical waves. 1.: Mechanisms and stability criteria J. Phys. Chem. 1990 4966 4972

[19] W. Jahnke, W. E. Skaggs, A. T. Winfree Chemical vortex dynamics in the Belousov–Zhabotinsky reaction and in the two–variable Orgonator model J. Phys. Chem. 1989 740 749

[20] S. Newhouse, D. Ruelle, F. Takens Occurrence of strange axiom A attractors near quasiperiodic flows on Tm (m Commun. Math. Phys. 1978

[21] H. Kantz, T. Schreiber. Nonlinear time series analysis. Cambridge Univesity Press, Cambridge, 1997.

[22] The TISEAN software package is publicly available at http://www.mpipk-sdresden.mpg.de/∼TISEAN.

[23] M. A. Budroni, M. Masia, M. Rustici, N. Marchettini, V. Volpert Bifurcations in spiral tip dynamics induced by natural convection in the Belousov–Zhabotinsky reaction J. Chem. Phys. 2009 024902 1

Cité par Sources :