Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 119-137.

Voir la notice de l'article provenant de la source EDP Sciences

We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability resulting in spontaneous ordering. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results reveal a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In semi-dilute filament solutions, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We show that the transition to the oriented state can be both continuous and discontinuous when the force-dependent detachment of motors is important.
DOI : 10.1051/mmnp/20116106

S. Swaminathan 1, 2 ; F. Ziebert 2, 3 ; I. S. Aranson 1, 2 ; D. Karpeev 4

1 Department of Engineering Sciences & Applied Mathematics Northwestern University, Evanston, IL 60208-3125 USA
2 Materials Science Division, Argonne National Laboratory, Argonne, IL, 60439
3 Laboratoire de Physico-Chimie Théorique - UMR CNRS 7083, ESPCI, 10 rue Vauquelin, F-75231 Paris, France
4 Mathematics & Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439
@article{MMNP_2011_6_1_a6,
     author = {S. Swaminathan and F. Ziebert and I. S. Aranson and D. Karpeev},
     title = {Motor-Mediated {Microtubule} {Self-Organization} in {Dilute} and {Semi-Dilute} {Filament} {Solutions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {119--137},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116106/}
}
TY  - JOUR
AU  - S. Swaminathan
AU  - F. Ziebert
AU  - I. S. Aranson
AU  - D. Karpeev
TI  - Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 119
EP  - 137
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116106/
DO  - 10.1051/mmnp/20116106
LA  - en
ID  - MMNP_2011_6_1_a6
ER  - 
%0 Journal Article
%A S. Swaminathan
%A F. Ziebert
%A I. S. Aranson
%A D. Karpeev
%T Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions
%J Mathematical modelling of natural phenomena
%D 2011
%P 119-137
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116106/
%R 10.1051/mmnp/20116106
%G en
%F MMNP_2011_6_1_a6
S. Swaminathan; F. Ziebert; I. S. Aranson; D. Karpeev. Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 119-137. doi : 10.1051/mmnp/20116106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116106/

[1] I. S. Aranson, L. S. Tsimring Pattern formation of microtubules and motors: Inelastic interaction of polar rods Phys Rev E 2005

[2] I. S. Aranson, L. S. Tsimring Theory of self-assembly of microtubules and motors Phys Rev E 2006

[3] I. S. Aranson, L. S. Tsimring, V. M. Vinokur Continuum theory of axial segregation in a long rotating drum Phys Rev E 1999 1975 1987

[4] I. S. Aranson, D. Volfson, L. S. Tsimring Swirling motion in a system of vibrated elongated particles Phys Rev E 2007

[5] E. Ben-Naim, P. L. Krapivsky Alignment of rods and partition of integers Phys Rev E 2006

[6] O. Campas, Y. Kafri, K. B. Zeldovich, J. Casademunt, J. F. Joanny Collective dynamics of interacting molecular motors Phys Rev Lett 2006

[7] C. M. Coppin, T. Finer, J. A. Spudich, R. D. Vale Measurement of the isometric force exerted by a single kinesin molecule Biophys. J. 1995 242s 244s

[8] C. M. Coppin, D. W. Pierce, L. Hsu, R. D. Vale The load dependence of kinesin’s mechanical cycle Proc. Natl. Acad. Sci. 1997 8539 8544

[9] P. G. de Gennes, J. Prost. The Physics of Liquid Crystals. Clarendon Press, Oxford, 1993.

[10] M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford, 1986.

[11] S. J. Fiedor, J. M. Ottino Dynamics of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes Phys Rev Lett 2003

[12] T. Finger, A. Voigt, J. Stadler, H. G. Niessen, L. Naji, R. Stannarius Coarsening of axial segregation patterns of slurries in a horizontally rotating drum Phys Rev E 2006

[13] T. L. Gilbert A phenomenological theory of damping in ferromagnetic materials IEEE Trans. Magn 2004 3443 3449

[14] S. W. Grill, K. Kruse, F. Jülicher Theory of mitotic spindle oscillations Phys Rev Lett 2005

[15] J. Howard. Mechanics of Motor Proteins and the Cytoskeleton, Springer, New York, 2001.

[16] D. Humphrey, C. Duggan, D. Saha, D. Smith, J. Käs Active fluidization of polymer networks through molecular motors Nature (London) 2002 413 416

[17] L. C. Kapitein, E. J. G. Peterman, B. H. Kwok, J. H. Kim, T. M. Kapoor, C. F. Schmidt The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks Letters to Nature 2005 114 118

[18] D. Karpeev, I. S. Aranson, L. S. Tsimring, H. G. Kaper Interactions of Semiflexible Filaments and Molecular Motors Phys Rev E 2007

[19] S. Klumpp, R. Lipowski Cooperative cargo transport by several molecular motors Proc. Natl. Acad. Sci. 2005 17284 17289

[20] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, K. Sekimoto Asters, vortices, and rotating spirals in active gels of polar filaments Phys Rev Lett 2004 078101.1 078101.4

[21] K. Kruse, F. Jülicher Self-organization and mechanical properties of active filament bundles Phys Rev E 2004 051913.1 051913.16

[22] L. D. Landau, E. M. Lifshitz On the theory of the dispersion of magnetic permeability in ferromagnetic bodies Phys. Z. Sovietunion 1935 153 169

[23] H. Y. Lee, M. Kardar Macroscopic equations for pattern formation in mixtures of microtubules and motors Phys Rev E 2001 056113.1 056113.8

[24] D. Loi, S. Mossa, L. F. Cugliandolo Effective temperature of active matter Phys Rev E 2008

[25] T. B. Liverpool, A. C. Maggs, A. Ajdari Viscoelasticity of solutions of motile polymers Phys Rev Lett 2001 4171 4174

[26] T. B. Liverpool, M. C. Marchetti Instabilities of isotropic solutions of active polar filaments Phys Rev Lett 2003

[27] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore J. Darnell. Molecular Cell Biology, W.H. Freeman, New York, 1999.

[28] D. Mizuno, C. Tardin, C. F. Schmidt, F. C. Mackintosh Nonequilibrium mechanics of active cytoskeletal networks Science 2007 370 373

[29] F. Nédélec, T. Surrey, A. C. Maggs Dynamic Concentration of Motors in Microtubule Arrays Phys Rev Lett 2001 3192 3195

[30] F. J. Nédélec, T. Surrey, A. C. Maggs, S. Leibler Self-organization of microtubules and motors Nature (London) 1997 305 308

[31] L. Onsager Effects of shape on the interaction of colloidal particles Ann. N.Y. Acad. Sci. 1949 627 659

[32] A. Parmeggiani, F. Jülicher, L. Peliti, J. Prost Detachment of molecular motors under tangential loading Europhys Lett 2001 603 609

[33] H. Risken. The Fokker-Planck Equation, Springer, Berlin (1989).

[34] R. A. Simha, S. Ramaswamy Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles Phys Rev Lett 2002

[35] D. Smith, F. Ziebert, D. Humphrey, C. Duggan, M. Steinbeck, W. Zimmermann, J. Kas Molecular motor-induced instabilities and cross-linkers determine biopolymer organization Biophysical Journal 2007 4445 4452

[36] A. Sokolov, I. S. Aranson, J. O.Kessler, R. E. Goldstein Concentration dependence of the collective dynamics of swimming bacteria Phys Rev Lett 2007

[37] T. Surrey, F. Nédélec, S. Leibler, E. Karsenti Physical properties determining self-organization of motors and microtubules Science 2001 1167 1171

[38] S. Swaminathan, D. Karpeev, I. S. Aranson Bundle dynamics of interacting polar rods Phys Rev E 2008

[39] S. Swaminathan, F. Ziebert, D. Karpeev, I. S. Aranson Motor-mediated alignment of microtubules in semidilute mixtures Phys Rev E 2009

[40] K. Takiguch Heavy meromyosin induces sliding movements between antiparallel actin filaments J. Biochem 1991 520 527

[41] R. Urrutia, M. A. Mcniven, J. P. Albanesi, D. B. Murphy, B. Kachar Purified kinesin promotes vesicle motility and induces active sliding between microtubules in vitro Proc Natl Acad Sci 1991 6701 6705

[42] R. D. Vale, R .A. Milligan The way things move: Looking under the hood of molecular motor proteins Science 2000 88 95

[43] F. Ziebert, I. S. Aranson Rheological and structural properties of dilute active filament solutions Phys Rev E 2008

[44] F. Ziebert, I. S. Aranson, L. S. Tsimring Effects of crosslinks on filament-motor organization New J. Phys. 2007

[45] F. Ziebert, M. Vershinin, S. P. Gross, I. S. Aranson Collective alignment of polar filaments by molecular motors Eur. Phys. J. E 2009 401 409

Cité par Sources :