Solitary Structures Sustained by Marangoni Flow
Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 48-61.

Voir la notice de l'article provenant de la source EDP Sciences

We construct interfacial solitary structures (spots) generated by a bistable chemical reaction or a non-equilibrium phase transition in a surfactant film. The structures are stabilized by Marangoni flow that prevents the spread of a state with a higher surface tension when it is dynamically favorable. In a system without surfactant mass conservation, a unique radius of a solitary spot exists within a certain range of values of the Marangoni number and of the deviation of chemical potential from the Maxvell construction, but multiple spots attract and coalesce. In a conservative system, there is a range of stable spot sizes, but solitary spots may exist only in a limited parametric range, beyond which multiple spots nucleate. Repeated coalescence and nucleation leads to chaotic dynamics of spots observed computationally in Ref. .
DOI : 10.1051/mmnp/20116103

L.M. Pismen 1

1 Department of Chemical Engineering and Minerva Center for Nonlinear Physics of Complex Systems, Technion, 32000 Haifa, Israel
@article{MMNP_2011_6_1_a3,
     author = {L.M. Pismen},
     title = {Solitary {Structures} {Sustained} by {Marangoni} {Flow}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {48--61},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2011},
     doi = {10.1051/mmnp/20116103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116103/}
}
TY  - JOUR
AU  - L.M. Pismen
TI  - Solitary Structures Sustained by Marangoni Flow
JO  - Mathematical modelling of natural phenomena
PY  - 2011
SP  - 48
EP  - 61
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116103/
DO  - 10.1051/mmnp/20116103
LA  - en
ID  - MMNP_2011_6_1_a3
ER  - 
%0 Journal Article
%A L.M. Pismen
%T Solitary Structures Sustained by Marangoni Flow
%J Mathematical modelling of natural phenomena
%D 2011
%P 48-61
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116103/
%R 10.1051/mmnp/20116103
%G en
%F MMNP_2011_6_1_a3
L.M. Pismen. Solitary Structures Sustained by Marangoni Flow. Mathematical modelling of natural phenomena, Tome 6 (2011) no. 1, pp. 48-61. doi : 10.1051/mmnp/20116103. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20116103/

[1] A. A. Golovin, L. M. Pismen Dynamic phase separation: From coarsening to turbulence via structure formation Chaos 2004 845 854

[2] A. M. Turing The chemical basis of morphogenesis Philos. Trans. R. Soc. London B 1952 37 72

[3] R. Kapral and K. Showalter (Eds.). Chemical waves and patterns. Kluwer Academic Publishers, New York, 1995.

[4] L. M. Pismen. Patterns and Interfaces in dissipative dynamics. Springer Verlag, Berlin, 2006.

[5] Z. Dagan, L. M. Pismen Marangoni waves induced by a multistable chemical reaction on thin liquid films J. Coll. Interface Sci. 1984 215 225

[6] L. M. Pismen Composition and flow patterns due to chemo-Marangoni instability in liquid films J. Coll. Interface Sci. 1984 237 247

[7] A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis Dynamics of a horizontal thin liquid film in the presence of reactive surfactants Phys. Fluids 2007

[8] L. Rongy, A. De Wit Solitary Marangoni-driven convective structures in bistable chemical systems Phys. Rev. E 2008

[9] L. M. Pismen Interaction of reaction-diffusion fronts and Marangoni flow on the interface of deep fluid Phys. Rev. Lett. 1997 382 385

[10] L. M. Pismen, J. Rubinstein Motion of vortex lines in the Ginzburg–Landau model Physica (Amsterdam) D 1991 353 360

[11] R. L. Pego Front migration in the nonlinear Cahn–Hilliard equation Proc. Roy. Soc. Ln A 1989 261 278

Cité par Sources :