Bilevel Approach of a Decomposed Topology Optimization Problem
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 128-131
Voir la notice de l'article provenant de la source EDP Sciences
In topology optimization problems, we are often forced to deal with large-scale numerical problems, so that the domain decomposition method occurs naturally. Consider a typical topology optimization problem, the minimum compliance problem of a linear isotropic elastic continuum structure, in which the constraints are the partial differential equations of linear elasticity. We subdivide the partial differential equations into two subproblems posed on non-overlapping sub-domains. In this paper, we consider the resulting problem as multilevel one and show that it can be written as one level problem
@article{10_1051_mmnp_20105721,
author = {A. Makrizi and B. Radi},
title = {Bilevel {Approach} of a {Decomposed} {Topology} {Optimization} {Problem}},
journal = {Mathematical modelling of natural phenomena},
pages = {128--131},
publisher = {mathdoc},
volume = {5},
number = {7 Supplement},
year = {2010},
doi = {10.1051/mmnp/20105721},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105721/}
}
TY - JOUR AU - A. Makrizi AU - B. Radi TI - Bilevel Approach of a Decomposed Topology Optimization Problem JO - Mathematical modelling of natural phenomena PY - 2010 SP - 128 EP - 131 VL - 5 IS - 7 Supplement PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105721/ DO - 10.1051/mmnp/20105721 LA - en ID - 10_1051_mmnp_20105721 ER -
%0 Journal Article %A A. Makrizi %A B. Radi %T Bilevel Approach of a Decomposed Topology Optimization Problem %J Mathematical modelling of natural phenomena %D 2010 %P 128-131 %V 5 %N 7 Supplement %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105721/ %R 10.1051/mmnp/20105721 %G en %F 10_1051_mmnp_20105721
A. Makrizi; B. Radi. Bilevel Approach of a Decomposed Topology Optimization Problem. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 128-131. doi: 10.1051/mmnp/20105721
[1] , , Solution of the topology optimization problem based subdomains method Applied Mathematical Sciences 2008 2029 2045
[2] A. Makrizi, B. Radi and A. El Hami. Approche multiniveaux pour la résolution de l’optimisation topologique décomposée. Proceedings du premier congrès de la société marocaine de mathématiques appliquées, ENIM, Rabat, 06-08 Février 2008.
[3] J.F. Bard. Practical bilevel optimization: algorithms and applications. Kluwer Academic Publishers, Dordrecht, 1998.
[4] M.P. Bendsøe, O. Sigmund. Topology optimization, theory, methods and applications. Springer Verlag, 2003.
Cité par Sources :