Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 91-96.

Voir la notice de l'article provenant de la source EDP Sciences

We present a new method for generating a d-dimensional simplicial mesh that minimizes the Lp-norm, p > 0, of the interpolation error or its gradient. The method uses edge-based error estimates to build a tensor metric. We describe and analyze the basic steps of our method
DOI : 10.1051/mmnp/20105715

A. Agouzal 1 ; K. Lipnikov 2 ; Yu. Vassilevsk 3

1 University Lyon1, Institute Camille Jordan, UMR 5208, 69100 Villeurbanne, France
2 Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.
3 Institute of Numerical Mathematics, Gubkina str. 8, Moscow 119333, Russia
@article{MMNP_2010_5_7_Supplement_a15,
     author = {A. Agouzal and K. Lipnikov and Yu. Vassilevsk},
     title = {Edge-based a {Posteriori} {Error} {Estimators} for {Generating} {Quasi-optimal} {Simplicial} {Meshes}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105715},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105715/}
}
TY  - JOUR
AU  - A. Agouzal
AU  - K. Lipnikov
AU  - Yu. Vassilevsk
TI  - Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 91
EP  - 96
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105715/
DO  - 10.1051/mmnp/20105715
LA  - en
ID  - MMNP_2010_5_7_Supplement_a15
ER  - 
%0 Journal Article
%A A. Agouzal
%A K. Lipnikov
%A Yu. Vassilevsk
%T Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes
%J Mathematical modelling of natural phenomena
%D 2010
%P 91-96
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105715/
%R 10.1051/mmnp/20105715
%G en
%F MMNP_2010_5_7_Supplement_a15
A. Agouzal; K. Lipnikov; Yu. Vassilevsk. Edge-based a Posteriori Error Estimators for Generating Quasi-optimal Simplicial Meshes. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 91-96. doi : 10.1051/mmnp/20105715. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105715/

[1] A. Agouzal, K. Lipnikov, Y. Vassilevski. Generation of quasi-optimal meshes based on a posteriori error estimates. In: Proceedings of 16th International Meshing Roundtable. M.Brewer and D.Marcum (eds.), Springer, (2007), 139–148.

[2] A. Agouzal, K. Lipnikov, Y. Vassilevski. Hessian-free metric-based mesh adaptation via geometry of interpolation error. To appear in Comp. Math. Math. Phys., 50 (2010).

[3] Y. Vassilevski, K. Lipnikov Adaptive algorithm for generation of quasi-optimal meshes Comp. Math. Math. Phys. 1999 1532 1551

[4] Y. Vassilevski, A. Agouzal An unified asymptotic analysis of interpolation errors for optimal meshes Doklady Mathematics 2005 879 882

Cité par Sources :