Mesh Refinement For Stabilized Convection Diffusion Equations
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 73-77.

Voir la notice de l'article provenant de la source EDP Sciences

We derive a residual a posteriori error estimates for the subscales stabilization of convection diffusion equation. The estimator yields upper bound on the error which is global and lower bound that is local
DOI : 10.1051/mmnp/20105712

B. Achchab 1 ; M. El Fatini 1, 2 ; A. Souissi 3

1 Hassan 1st University, LM2CE, ESTB and FSJES, B.P. 218, Berrechid, Morocco
2 Hassan II University -Mohammadia, LAMS, L3A, FSBM, B.P. 7955, Casablanca, Morocco
3 Mohammed V-Agdal University, GAN, LMA, FSR and LERMA, EMI, B.P. 1014, Rabat, Morocco
@article{MMNP_2010_5_7_Supplement_a12,
     author = {B. Achchab and M. El Fatini and A. Souissi},
     title = {Mesh {Refinement} {For} {Stabilized} {Convection} {Diffusion} {Equations}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {73--77},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105712},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105712/}
}
TY  - JOUR
AU  - B. Achchab
AU  - M. El Fatini
AU  - A. Souissi
TI  - Mesh Refinement For Stabilized Convection Diffusion Equations
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 73
EP  - 77
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105712/
DO  - 10.1051/mmnp/20105712
LA  - en
ID  - MMNP_2010_5_7_Supplement_a12
ER  - 
%0 Journal Article
%A B. Achchab
%A M. El Fatini
%A A. Souissi
%T Mesh Refinement For Stabilized Convection Diffusion Equations
%J Mathematical modelling of natural phenomena
%D 2010
%P 73-77
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105712/
%R 10.1051/mmnp/20105712
%G en
%F MMNP_2010_5_7_Supplement_a12
B. Achchab; M. El Fatini; A. Souissi. Mesh Refinement For Stabilized Convection Diffusion Equations. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 73-77. doi : 10.1051/mmnp/20105712. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105712/

[1] B. Achchab, M. El Fatini, A. Ern, A. Souissi Adaptive mesh for algebraic orthogonal subscale stabilization of convective dispersive transport C. R. Math. Acad. Sci. Paris. 2008 1187 1190

[2] B. Achchab, M. El Fatini, A. Ern, A. Souissi A posteriori error estimator for subgrid viscosity stabilisation applied to convection-diffusion problem AML 2009 1418 1424

[3] F. Brezzi, A. Russo Chosing bubbles for advection-diffusion problems Math. Model. and Meth. Appl. Sci. 1994 571 587

[4] A. N. Brooks, T. J. R. Hughes Streamline Upwind/ Petrov Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations Model. Comput. Methods Appl. Mech. Engrg. 1982 1 3

[5] R. Codina On stabilized finite element methods for linear systems of convection-diffusion-reaction equations Comp. Meth. Appl. Mech. Engrg. 2000 61 82

[6] J. L. Guermond Subgrid Stabilization of Galerkin approximations of linear monotone operators Journal of Numerical Analysis (IMA) 2001 165 197

[7] T. J. R. Hughes Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles and the origin of stabilized methods Comp. Meth. Appl. Mech. Engrg. 1995 387 401

[8] O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations Numer. Math. 1982 309 332

[9] R. Verfürth A posteriori error estimators for convection-diffusion equations Numer. Math. 1998 641 663

Cité par Sources :