Meshless Polyharmonic Div-Curl Reconstruction
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 55-59.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we will discuss the meshless polyharmonic reconstruction of vector fields from scattered data, possibly, contaminated by noise. We give an explicit solution of the problem. After some theoretical framework, we discuss some numerical aspect arising in the problems related to the reconstruction of vector fields
DOI : 10.1051/mmnp/20105709

M. N. Benbourhim 1 ; A. Bouhamidi 2

1 Institute of Mathematics of Toulouse, University of Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex 9, France
2 University of Lille Nord de France, ULCO, L.M.P.A, 50, rue F. Buisson, BP 699,F-62228 Calais Cedex, France
@article{MMNP_2010_5_7_Supplement_a9,
     author = {M. N. Benbourhim and A. Bouhamidi},
     title = {Meshless {Polyharmonic} {Div-Curl} {Reconstruction}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {55--59},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105709},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/}
}
TY  - JOUR
AU  - M. N. Benbourhim
AU  - A. Bouhamidi
TI  - Meshless Polyharmonic Div-Curl Reconstruction
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 55
EP  - 59
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/
DO  - 10.1051/mmnp/20105709
LA  - en
ID  - MMNP_2010_5_7_Supplement_a9
ER  - 
%0 Journal Article
%A M. N. Benbourhim
%A A. Bouhamidi
%T Meshless Polyharmonic Div-Curl Reconstruction
%J Mathematical modelling of natural phenomena
%D 2010
%P 55-59
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/
%R 10.1051/mmnp/20105709
%G en
%F MMNP_2010_5_7_Supplement_a9
M. N. Benbourhim; A. Bouhamidi. Meshless Polyharmonic Div-Curl Reconstruction. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 55-59. doi : 10.1051/mmnp/20105709. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/

[1] M. N. Benbourhim, A. Bouhamidi Pseudo-polyharmonic vectorial approximation for div-curl and elastic semi-norms Numer. Math. 2008 333 364

[2] J. Duchon. Splines minimizing rotation-invariant seminorms in Sobolev spaces. In constructive theory of functions of several variables, eds. W. Schempp and K. Zeller, Lecture notes in mathematics, vol. 571, Springer-Verlag, Berlin, (1977), 85–100.

[3] T. Iwaniec, C. Sbordone Quasiharmonic fields Ann. I. H. Poincaré-AN 18 2001 519 572

[4] J. Peetre Espaces d’interpolation et théorème de Soboleff Ann. Inst. Fourier, Grenoble 1966 279 317

[5] L. Schwartz. Théorie des distibutions. Hermann, Paris, 1966.

[6] E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970.

Cité par Sources :