Voir la notice de l'article provenant de la source EDP Sciences
M. N. Benbourhim 1 ; A. Bouhamidi 2
@article{MMNP_2010_5_7_Supplement_a9, author = {M. N. Benbourhim and A. Bouhamidi}, title = {Meshless {Polyharmonic} {Div-Curl} {Reconstruction}}, journal = {Mathematical modelling of natural phenomena}, pages = {55--59}, publisher = {mathdoc}, volume = {5}, number = {7 Supplement}, year = {2010}, doi = {10.1051/mmnp/20105709}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/} }
TY - JOUR AU - M. N. Benbourhim AU - A. Bouhamidi TI - Meshless Polyharmonic Div-Curl Reconstruction JO - Mathematical modelling of natural phenomena PY - 2010 SP - 55 EP - 59 VL - 5 IS - 7 Supplement PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/ DO - 10.1051/mmnp/20105709 LA - en ID - MMNP_2010_5_7_Supplement_a9 ER -
%0 Journal Article %A M. N. Benbourhim %A A. Bouhamidi %T Meshless Polyharmonic Div-Curl Reconstruction %J Mathematical modelling of natural phenomena %D 2010 %P 55-59 %V 5 %N 7 Supplement %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/ %R 10.1051/mmnp/20105709 %G en %F MMNP_2010_5_7_Supplement_a9
M. N. Benbourhim; A. Bouhamidi. Meshless Polyharmonic Div-Curl Reconstruction. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 55-59. doi : 10.1051/mmnp/20105709. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105709/
[1] Pseudo-polyharmonic vectorial approximation for div-curl and elastic semi-norms Numer. Math. 2008 333 364
,[2] J. Duchon. Splines minimizing rotation-invariant seminorms in Sobolev spaces. In constructive theory of functions of several variables, eds. W. Schempp and K. Zeller, Lecture notes in mathematics, vol. 571, Springer-Verlag, Berlin, (1977), 85–100.
[3] Quasiharmonic fields Ann. I. H. Poincaré-AN 18 2001 519 572
,[4] Espaces d’interpolation et théorème de Soboleff Ann. Inst. Fourier, Grenoble 1966 279 317
[5] L. Schwartz. Théorie des distibutions. Hermann, Paris, 1966.
[6] E. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970.
Cité par Sources :