Influence of Vibrations on Convective Instability of Reaction Fronts in Liquids
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 35-41.

Voir la notice de l'article provenant de la source EDP Sciences

Propagation of polymerization fronts with liquid monomer and liquid polymer is considered and the influence of vibrations on critical conditions of convective instability is studied. The model includes the heat equation, the equation for the concentration and the Navier-Stokes equations considered under the Boussinesq approximation. Linear stability analysis of the problem is fulfilled, and the convective instability boundary is found depending on the amplitude and on the frequency of vibrations
DOI : 10.1051/mmnp/20105706

K. Allali 1 ; F. Bikany 1 ; A. Taik 1 ; V. Volpert 2

1 University Hassan II, UFR-MASI, Dept. of Maths, B.P. 146, FST-Mohammadia, Morocco
2 University Lyon1, Institute Camille Jordan, UMR 5208, 69100 Villeurbanne, France
@article{MMNP_2010_5_7_Supplement_a6,
     author = {K. Allali and F. Bikany and A. Taik and V. Volpert},
     title = {Influence of {Vibrations} on {Convective} {Instability} of {Reaction} {Fronts} in {Liquids}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105706/}
}
TY  - JOUR
AU  - K. Allali
AU  - F. Bikany
AU  - A. Taik
AU  - V. Volpert
TI  - Influence of Vibrations on Convective Instability of Reaction Fronts in Liquids
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 35
EP  - 41
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105706/
DO  - 10.1051/mmnp/20105706
LA  - en
ID  - MMNP_2010_5_7_Supplement_a6
ER  - 
%0 Journal Article
%A K. Allali
%A F. Bikany
%A A. Taik
%A V. Volpert
%T Influence of Vibrations on Convective Instability of Reaction Fronts in Liquids
%J Mathematical modelling of natural phenomena
%D 2010
%P 35-41
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105706/
%R 10.1051/mmnp/20105706
%G en
%F MMNP_2010_5_7_Supplement_a6
K. Allali; F. Bikany; A. Taik; V. Volpert. Influence of Vibrations on Convective Instability of Reaction Fronts in Liquids. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 35-41. doi : 10.1051/mmnp/20105706. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105706/

[1] K. Allali, J. Pojman, V. Volpert Influence of vibrations on convective instability of polymerization fronts J. of Engineering Mathematics 2001 13 31

[2] M. Garbey, A. Taik, V. Volpert Linear stability analysis of reaction fronts in liquids Quart. Appl. Math. 1996 225 247

[3] M. Garbey, A. Taik, V. Volpert Influence of natural convection on stability of reaction fronts in liquids Quart. Appl. Math. 1998 1 35

[4] B.J. Matkowsky, G.I. Sivashinsky An asymptotic derivation of two models in flame theory associated with the constant density approximation SIAMJ. Appl. Math. 1979

[5] B.V. Novozhilov The rate of propagation of the front of an exothermic reaction in a condensed phase Proc. Acad. Sci. URSS, Phys. Chem. Sect. 1961 836 838

[6] Ya.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze. The mathematical theory of combustion and explosions. New York: Consultants Bureau (1985).

[7] Ya.B. Zeldovich, D.A. Frank-Kamenetskii. Theory of thermal propagation of flames, Zh. Fiz. Khim., 12, 100, 1938.

Cité par Sources :