Voir la notice de l'article provenant de la source EDP Sciences
A. Kaddar 1 ; H. Talibi Alaoui 1
@article{MMNP_2010_5_7_Supplement_a5, author = {A. Kaddar and H. Talibi Alaoui}, title = {Global {Existence} of {Periodic} {Solutions} in a {Delayed} {Tumor-Immune} {Model}}, journal = {Mathematical modelling of natural phenomena}, pages = {29--34}, publisher = {mathdoc}, volume = {5}, number = {7 Supplement}, year = {2010}, doi = {10.1051/mmnp/20105705}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/} }
TY - JOUR AU - A. Kaddar AU - H. Talibi Alaoui TI - Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model JO - Mathematical modelling of natural phenomena PY - 2010 SP - 29 EP - 34 VL - 5 IS - 7 Supplement PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/ DO - 10.1051/mmnp/20105705 LA - en ID - MMNP_2010_5_7_Supplement_a5 ER -
%0 Journal Article %A A. Kaddar %A H. Talibi Alaoui %T Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model %J Mathematical modelling of natural phenomena %D 2010 %P 29-34 %V 5 %N 7 Supplement %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/ %R 10.1051/mmnp/20105705 %G en %F MMNP_2010_5_7_Supplement_a5
A. Kaddar; H. Talibi Alaoui. Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 29-34. doi : 10.1051/mmnp/20105705. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/
[1] Discrete delay, distributed delay and stability switches Journal of Mathematical Analysis and Applications 1982 592 627
,[2] Dynamics of the tumor-immune system competition: the effect of time delay Int. J. Appl. Comput. Sci. 2003 395 406
[3] Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis Bull. Math. Biol. 1994 295 321
,[4] Symmetric functional differential equation and neural networks with memory Trans. Am. Math. Sco. 1998 4799 4838
[5] J. K. Hale, H. Koçak. Dynamics and bifurcations. Springer- Verlag, New York, 1991.
[6] J. K. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Springer- Verlag, New York, 1993.
Cité par Sources :