Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 29-34.

Voir la notice de l'article provenant de la source EDP Sciences

This paper is devoted to the study of global existence of periodic solutions of a delayed tumor-immune competition model. Also some numerical simulations are given to illustrate the theoretical results
DOI : 10.1051/mmnp/20105705

A. Kaddar 1 ; H. Talibi Alaoui 1

1 Department of Mathematics, Chouaib Doukkali University Faculty of Sciences, El Jadida, Morocco
@article{MMNP_2010_5_7_Supplement_a5,
     author = {A. Kaddar and H. Talibi Alaoui},
     title = {Global {Existence} of {Periodic} {Solutions} in a {Delayed} {Tumor-Immune} {Model}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105705},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/}
}
TY  - JOUR
AU  - A. Kaddar
AU  - H. Talibi Alaoui
TI  - Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 29
EP  - 34
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/
DO  - 10.1051/mmnp/20105705
LA  - en
ID  - MMNP_2010_5_7_Supplement_a5
ER  - 
%0 Journal Article
%A A. Kaddar
%A H. Talibi Alaoui
%T Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model
%J Mathematical modelling of natural phenomena
%D 2010
%P 29-34
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/
%R 10.1051/mmnp/20105705
%G en
%F MMNP_2010_5_7_Supplement_a5
A. Kaddar; H. Talibi Alaoui. Global Existence of Periodic Solutions in a Delayed Tumor-Immune Model. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 29-34. doi : 10.1051/mmnp/20105705. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105705/

[1] K.L. Cooke, Z. Grossman Discrete delay, distributed delay and stability switches Journal of Mathematical Analysis and Applications 1982 592 627

[2] M. Gałach Dynamics of the tumor-immune system competition: the effect of time delay Int. J. Appl. Comput. Sci. 2003 395 406

[3] V.A. Kuznetsov, M.A. Taylor Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis Bull. Math. Biol. 1994 295 321

[4] J. Wu Symmetric functional differential equation and neural networks with memory Trans. Am. Math. Sco. 1998 4799 4838

[5] J. K. Hale, H. Koçak. Dynamics and bifurcations. Springer- Verlag, New York, 1991.

[6] J. K. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Springer- Verlag, New York, 1993.

Cité par Sources :