Local Parameterization and the Asymptotic Numerical Method
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 16-22.

Voir la notice de l'article provenant de la source EDP Sciences

The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems
DOI : 10.1051/mmnp/20105703

H. Mottaqui 1 ; B. Braikat 1 ; N. Damil 1

1 Laboratory of Computing Science in Mechanic, Faculty of Science Ben M’Sik University of Hassan II Mohammedia - Casablanca, B.P. 7955 Sidi Othmane, Casablanca, Morocco
@article{MMNP_2010_5_7_Supplement_a3,
     author = {H. Mottaqui and B. Braikat and N. Damil},
     title = {Local {Parameterization} and the {Asymptotic} {Numerical} {Method}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/20105703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105703/}
}
TY  - JOUR
AU  - H. Mottaqui
AU  - B. Braikat
AU  - N. Damil
TI  - Local Parameterization and the Asymptotic Numerical Method
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 16
EP  - 22
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105703/
DO  - 10.1051/mmnp/20105703
LA  - en
ID  - MMNP_2010_5_7_Supplement_a3
ER  - 
%0 Journal Article
%A H. Mottaqui
%A B. Braikat
%A N. Damil
%T Local Parameterization and the Asymptotic Numerical Method
%J Mathematical modelling of natural phenomena
%D 2010
%P 16-22
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105703/
%R 10.1051/mmnp/20105703
%G en
%F MMNP_2010_5_7_Supplement_a3
H. Mottaqui; B. Braikat; N. Damil. Local Parameterization and the Asymptotic Numerical Method. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 16-22. doi : 10.1051/mmnp/20105703. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105703/

[1] B. Cochelin A path-following technique via an asymptotic-numerical method Computers Structures 1994 1181 1192

[2] B. Cochelin, N. Damil, M. Potier-Ferry. Méthode asymptotique numérique. Hermès-Lavoisier, Paris, 2007.

[3] A. Elhage-Hussein, M. Potier-Ferry, N. Damil A numerical continuation method based on Padé approximants Int.J. Solids and Structures 2000 6981 7001

[4] J. J. Gervais, H. Sadiky A new steplength control for continuation with the asymptotic numerical method IAM, J. Nomer. Anal. 2000 207 229

[5] H. Mottaqui, B. Braikat, N. Damil.Influence de la paramétrisation dans la méthode asymptotique numérique : Application au calcul de structures. Premier congrès Tunisien de mécanique, (2008), 173–174.

[6] W. C. Rheinboldt, J. V. Burkadt A Localy parameterized continuation Acm Transaction on Mathmatical Software 1983 215 235

[7] R. Seydel. World of bifurcation, online collection and tutorials of nonlinear phenomena, (www.bifurcation.de) (1999).

Cité par Sources :