Voir la notice de l'article provenant de la source EDP Sciences
O. Awono 1 ; J. Tagoudjeu 1, 2
@article{MMNP_2010_5_7_Supplement_a10, author = {O. Awono and J. Tagoudjeu}, title = {A {SOR} {Acceleration} of {Self-Adjoint} and {m-Accretive} {Splitting} {Iterative} {Solver} for {2-D} {Neutron} {Transport} {Equation}}, journal = {Mathematical modelling of natural phenomena}, pages = {60--66}, publisher = {mathdoc}, volume = {5}, number = {7 Supplement}, year = {2010}, doi = {10.1051/mmnp/201057010}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/} }
TY - JOUR AU - O. Awono AU - J. Tagoudjeu TI - A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation JO - Mathematical modelling of natural phenomena PY - 2010 SP - 60 EP - 66 VL - 5 IS - 7 Supplement PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/ DO - 10.1051/mmnp/201057010 LA - en ID - MMNP_2010_5_7_Supplement_a10 ER -
%0 Journal Article %A O. Awono %A J. Tagoudjeu %T A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation %J Mathematical modelling of natural phenomena %D 2010 %P 60-66 %V 5 %N 7 Supplement %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/ %R 10.1051/mmnp/201057010 %G en %F MMNP_2010_5_7_Supplement_a10
O. Awono; J. Tagoudjeu. A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 60-66. doi : 10.1051/mmnp/201057010. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/
[1] Iterative methods for a class of linear operator equations Int. J. Contemp. Math. Sci. 2009 549 564
,[2] A splitting iterative method for solving the neutron transport equation Math. Model. Anal. 2009 271 289
,[3] O. Awono and J. Tagoudjeu. A self-adjoint and m-accretive splitting iterative method for solving the neutron transport equation in 1-D sphérical geometry. Proceeding of CARI’08 Rabat-Morocco, (2008), 331–338.
[4] P. Lascaux and R. Théodor. Analyse numérique matricielle appliquée à l’Art de l’Ingénieur. Volume 2, Masson, Paris, 1987.
[5] D. M. Young. Iterative solution of large linear systems. Academic Press, New York and London, 1971.
Cité par Sources :