A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 60-66.

Voir la notice de l'article provenant de la source EDP Sciences

We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is a 2 by 2 matrix of operators. An infinite dimensional adaptation of a SOR algorithm is then applied to solve the matrix operator equation. Theoretical and numerical results of convergence are given
DOI : 10.1051/mmnp/201057010

O. Awono 1 ; J. Tagoudjeu 1, 2

1 ENSP, University of Yaoundé I, P.O. Box 8390, Yaoundé, Cameroon
2 Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
@article{MMNP_2010_5_7_Supplement_a10,
     author = {O. Awono and J. Tagoudjeu},
     title = {A {SOR} {Acceleration} of {Self-Adjoint} and {m-Accretive} {Splitting} {Iterative} {Solver} for {2-D} {Neutron} {Transport} {Equation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {60--66},
     publisher = {mathdoc},
     volume = {5},
     number = {7 Supplement},
     year = {2010},
     doi = {10.1051/mmnp/201057010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/}
}
TY  - JOUR
AU  - O. Awono
AU  - J. Tagoudjeu
TI  - A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 60
EP  - 66
VL  - 5
IS  - 7 Supplement
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/
DO  - 10.1051/mmnp/201057010
LA  - en
ID  - MMNP_2010_5_7_Supplement_a10
ER  - 
%0 Journal Article
%A O. Awono
%A J. Tagoudjeu
%T A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation
%J Mathematical modelling of natural phenomena
%D 2010
%P 60-66
%V 5
%N 7 Supplement
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/
%R 10.1051/mmnp/201057010
%G en
%F MMNP_2010_5_7_Supplement_a10
O. Awono; J. Tagoudjeu. A SOR Acceleration of Self-Adjoint and m-Accretive Splitting Iterative Solver for 2-D Neutron Transport Equation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 7 Supplement, pp. 60-66. doi : 10.1051/mmnp/201057010. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201057010/

[1] Awona Onana, J. Tagoudjeu Iterative methods for a class of linear operator equations Int. J. Contemp. Math. Sci. 2009 549 564

[2] O. Awono, J. Tagoudjeu A splitting iterative method for solving the neutron transport equation Math. Model. Anal. 2009 271 289

[3] O. Awono and J. Tagoudjeu. A self-adjoint and m-accretive splitting iterative method for solving the neutron transport equation in 1-D sphérical geometry. Proceeding of CARI’08 Rabat-Morocco, (2008), 331–338.

[4] P. Lascaux and R. Théodor. Analyse numérique matricielle appliquée à l’Art de l’Ingénieur. Volume 2, Masson, Paris, 1987.

[5] D. M. Young. Iterative solution of large linear systems. Academic Press, New York and London, 1971.

Cité par Sources :