Voir la notice de l'article provenant de la source EDP Sciences
L. M. Abia 1 ; O. Angulo 2 ; J. C. López-Marcos 1 ; M. A. López-Marcos 1
@article{10_1051_mmnp_20105601,
author = {L. M. Abia and O. Angulo and J. C. L\'opez-Marcos and M. A. L\'opez-Marcos},
title = {Long-Time {Simulation} of a {Size-Structured} {Population} {Model} with a {Dynamical} {Resource}},
journal = {Mathematical modelling of natural phenomena},
pages = {1--21},
publisher = {mathdoc},
volume = {5},
number = {6},
year = {2010},
doi = {10.1051/mmnp/20105601},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/}
}
TY - JOUR AU - L. M. Abia AU - O. Angulo AU - J. C. López-Marcos AU - M. A. López-Marcos TI - Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource JO - Mathematical modelling of natural phenomena PY - 2010 SP - 1 EP - 21 VL - 5 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/ DO - 10.1051/mmnp/20105601 LA - en ID - 10_1051_mmnp_20105601 ER -
%0 Journal Article %A L. M. Abia %A O. Angulo %A J. C. López-Marcos %A M. A. López-Marcos %T Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource %J Mathematical modelling of natural phenomena %D 2010 %P 1-21 %V 5 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/ %R 10.1051/mmnp/20105601 %G en %F 10_1051_mmnp_20105601
L. M. Abia; O. Angulo; J. C. López-Marcos; M. A. López-Marcos. Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 1-21. doi: 10.1051/mmnp/20105601
[1] , , Age-structured population dynamics models and their numerical solutions Ecol. Model. 2005 112 136
[2] , , Size-structured population dynamics models and their numerical solutions Discrete Contin. Dyn. Syst. B 2004 1203 1222
[3] , , , Numerical schemes for a size-structured cell population model with equal fission Mat. Computer Model. 2009 653 664
[4] , , , Numerical integration of a mathematical model of hematopoietic stem cell dynamics Computers and Math. Applic. 2008 594 606
[5] , Numerical integration of fully nonlinear size-structured models Appl. Numer. Math. 2004 291 327
[6] , , , Dynamics of a structured slug population model in the absence of seasonal variation Math. Mod. Meth. in Appl. Sci. 2006 1961 1985
[7] J.M. Cushing. An Introduction to Structured Populations Dynamics. CMB-NSF Regional Conference Series in Applied Mathematics. SIAM, 1998.
[8] M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs. C.N.R., Giardini Editori e Stampatori, Pisa, 1995.
[9] , , A fourth-order method for numerical integration of age- and size-structured population models Numer. Methods Partial Differential Equations 2009 918 930
[10] , On the dynamics of chemically stressed populations: the deduction of a population consequences from effects on individuals Ecotox. Environ. Saf. 1984 254 274
[11] J.A.J. Metz and E.O. Dieckmann, editors. The Dynamics of Physiologically Structured Populations. Springer Lecture Notes in Biomathematics, 68. Springer, Heildelberg, 1986.
[12] B. Perthame. Transport Equations in Biology. Birkhäuser Verlag, Basel, 2007.
[13] Numerical methods for structured population models: The escalator boxcar train Numer. Methods Partial Differential Equations 1988 173 195
[14] , , A high order WENO scheme for a hierarchical size-structured population model J. Sci. Comput. 2007 279 291
[15] G.F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, eds, New York, 1985.
Cité par Sources :