Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 1-21.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, we study the numerical approximation of a size-structured population model whose dependency on the environment is managed by the evolution of a vital resource. We show that this is a difficult task: some numerical methods are not suitable for a long-time integration. We analyze the reasons for the failure.
DOI : 10.1051/mmnp/20105601

L. M. Abia 1 ; O. Angulo 2 ; J. C. López-Marcos 1 ; M. A. López-Marcos 1

1 Departamento de Matemática Aplicada. Facultad de Ciencias Universidad de Valladolid, Paseo Prado de la Magdalena sn., 47005. Valladolid. Spain
2 Departamento de Matemática Aplicada, Escuela Universitaria Politécnica Universidad de Valladolid, C/ Fco. Mendizabal 1, 47014 Valladolid, Spain
@article{MMNP_2010_5_6_a0,
     author = {L. M. Abia and O. Angulo and J. C. L\'opez-Marcos and M. A. L\'opez-Marcos},
     title = {Long-Time {Simulation} of a {Size-Structured} {Population} {Model} with a {Dynamical} {Resource}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--21},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {2010},
     doi = {10.1051/mmnp/20105601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/}
}
TY  - JOUR
AU  - L. M. Abia
AU  - O. Angulo
AU  - J. C. López-Marcos
AU  - M. A. López-Marcos
TI  - Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 1
EP  - 21
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/
DO  - 10.1051/mmnp/20105601
LA  - en
ID  - MMNP_2010_5_6_a0
ER  - 
%0 Journal Article
%A L. M. Abia
%A O. Angulo
%A J. C. López-Marcos
%A M. A. López-Marcos
%T Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource
%J Mathematical modelling of natural phenomena
%D 2010
%P 1-21
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/
%R 10.1051/mmnp/20105601
%G en
%F MMNP_2010_5_6_a0
L. M. Abia; O. Angulo; J. C. López-Marcos; M. A. López-Marcos. Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 6, pp. 1-21. doi : 10.1051/mmnp/20105601. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105601/

[1] L. M. Abia, O. Angulo, J. C. López-Marcos Age-structured population dynamics models and their numerical solutions Ecol. Model. 2005 112 136

[2] L. M. Abia, O. Angulo, J. C. López-Marcos Size-structured population dynamics models and their numerical solutions Discrete Contin. Dyn. Syst. B 2004 1203 1222

[3] L.M. Abia, O. Angulo, J.C. López-Marcos, M.A. López-Marcos. Numerical schemes for a size-structured cell population model with equal fission Mat. Computer Model. 2009 653 664

[4] M. Adimy, O. Angulo, F. Crauste, J.C. López-Marcos. Numerical integration of a mathematical model of hematopoietic stem cell dynamics Computers and Math. Applic. 2008 594 606

[5] O. Angulo, J. C. López-Marcos. Numerical integration of fully nonlinear size-structured models Appl. Numer. Math. 2004 291 327

[6] M.A. Bees, O. Angulo, J.C. López-Marcos, D. Schley Dynamics of a structured slug population model in the absence of seasonal variation Math. Mod. Meth. in Appl. Sci. 2006 1961 1985

[7] J.M. Cushing. An Introduction to Structured Populations Dynamics. CMB-NSF Regional Conference Series in Applied Mathematics. SIAM, 1998.

[8] M. Iannelli. Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs. C.N.R., Giardini Editori e Stampatori, Pisa, 1995.

[9] M. Iannelli, T. Kostova, F.A. Milner A fourth-order method for numerical integration of age- and size-structured population models Numer. Methods Partial Differential Equations 2009 918 930

[10] S.A.L.M Kooijman, J.A.J. Metz On the dynamics of chemically stressed populations: the deduction of a population consequences from effects on individuals Ecotox. Environ. Saf. 1984 254 274

[11] J.A.J. Metz and E.O. Dieckmann, editors. The Dynamics of Physiologically Structured Populations. Springer Lecture Notes in Biomathematics, 68. Springer, Heildelberg, 1986.

[12] B. Perthame. Transport Equations in Biology. Birkhäuser Verlag, Basel, 2007.

[13] A.M. De Roos. Numerical methods for structured population models: The escalator boxcar train Numer. Methods Partial Differential Equations 1988 173 195

[14] J. Shen, C.W. Shu, M.P. Zhang A high order WENO scheme for a hierarchical size-structured population model J. Sci. Comput. 2007 279 291

[15] G.F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, eds, New York, 1985.

Cité par Sources :