Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_20105414,
author = {D. Potapov and F. Sukochev},
title = {Double {Operator} {Integrals} and {Submajorization}},
journal = {Mathematical modelling of natural phenomena},
pages = {317--339},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2010},
doi = {10.1051/mmnp/20105414},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/}
}
TY - JOUR AU - D. Potapov AU - F. Sukochev TI - Double Operator Integrals and Submajorization JO - Mathematical modelling of natural phenomena PY - 2010 SP - 317 EP - 339 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/ DO - 10.1051/mmnp/20105414 LA - en ID - 10_1051_mmnp_20105414 ER -
%0 Journal Article %A D. Potapov %A F. Sukochev %T Double Operator Integrals and Submajorization %J Mathematical modelling of natural phenomena %D 2010 %P 317-339 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/ %R 10.1051/mmnp/20105414 %G en %F 10_1051_mmnp_20105414
D. Potapov; F. Sukochev. Double Operator Integrals and Submajorization. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 317-339. doi: 10.1051/mmnp/20105414
[1] Comparison of norms |||f(A) − f(B) ||| and |||f(|A − B|) ||| Math. Z. 1988 403 409
[2] , , , Operator integrals, spectral shift, and spectral flow Canad. J. Math. 2009 241 263
[3] , , Estimates of the spectrum of a difference of fractional powers of selfadjoint operators Izv. Vysš. Učebn. Zaved. Matematika 1975 3 10
[4] , Double Stieltjes operator integrals Problemy Mat. Fiz. 1966 33 67
[5] , Double Stieltjes operator integrals, II Problemy Mat. Fiz. 1967 26 60
[6] , Double Stieltjes operator integrals, III Problemy Mat. Fiz. 1973 27 53
[7] , Formulas of differentiation according to a parameter of functions of Hermitian operators Doklady Akad. Nauk SSSR (N.S.) 1951 13 16
[8] , Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 1956 81 105
[9] , , Spectral flow is the integral of one forms on Banach manifolds of self adjoint Fredholm operators Adv. Math 2009 1809 1849
[10] , Transgression du caractère de Chern et cohomologie cyclique C. R. Acad. Sci. Paris Sér. I Math. 1986 913 918
[11] , On a submajorization inequality of T. Ando. Operator theory in function spaces and Banach lattices Oper. Theory Adv. Appl. 1995 113 131
[12] , Submajorisation inequalities for convex and concave functions of sums of measurable operators Positivity 2009 107 124
[13] I.C. Gohberg. M.G. Kreĭn. Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, Providence, R.I., AMS, 18, 1969.
[14] , Symmetric norms and spaces of operators J. Reine Angew. Math. 621 2008 81 121
[15] H. Kosaki. Positive definiteness of functions with applications to operator norm inequalities. Preprint, 2009.
[16] , Differentiation of operator functions in non-commutative Lp-spaces J. Funct. Anal. 2004 28 75
[17] , Commutator estimates and R-flows in non-commutative operator spaces Proc. Edinb. Math. Soc. 2007 293 324
[18] , , Double operator integrals J. Funct. Anal. 2002 52 111
[19] , , On the Koplienko spectral shift function. I. Basics Zh. Mat. Fiz. Anal. Geom. 2008 63 107
[20] Beiträge zur Störungstheorie der Spektralzerlegung Math. Ann. 1951 415 438
[21] A. McIntosh. Heinz inequalities and perturbation of spectral families. Macquarie Mathematical Reports, 79–0006 (1979).
[22] G. Pisier, Q. Xu. Non-commutative Lp-spaces. Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1459–1517.
[23] , Lipschitz and commutator estimates in symmetric operator spaces J. Operator Theory 2008 211 234
[24] , Unbounded Fredholm modules and double operator integrals J. Reine Angew. Math. 2009 159 185
[25] A non-commutative extension of abstract integration Annals of Mathematics 1953 401 457
[26] B. Simon. Trace ideals and their applications. Mathematical Surveys and Monographs, AMS, Providence, RI, 120 (2005).
[27] , The triangle inequality for operators that are measurable with respect to Hardy-Littlewood order Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1988 44 50
[28] , Symmetric spaces over semifinite von Neumann algebras Soviet Math. Dokl. 1991 97 101
[29] , Weak convergence in non-commutative symmetric spaces J. Operator Theory 1994 35 65
[30] Some matrix inequalities and metrization of matric-space Rev. Tomsk Univ. 1937 286 300
Cité par Sources :