Double Operator Integrals and Submajorization
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 317-339.

Voir la notice de l'article provenant de la source EDP Sciences

We present a user-friendly version of a double operator integration theory which still retains a capacity for many useful applications. Using recent results from the latter theory applied in noncommutative geometry, we derive applications to analogues of the classical Heinz inequality, a simplified proof of a famous inequality of Birman-Koplienko-Solomyak and also to the Connes-Moscovici inequality. Our methods are sufficiently strong to treat these inequalities in the setting of symmetric operator norms in general semifinite von Neumann algebras.
DOI : 10.1051/mmnp/20105414

D. Potapov 1 ; F. Sukochev 1

1 School of Mathematics and Statistics, University of NSW, Kensington NSW 2052, Australia
@article{MMNP_2010_5_4_a14,
     author = {D. Potapov and F. Sukochev},
     title = {Double {Operator} {Integrals} and {Submajorization}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {317--339},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105414},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/}
}
TY  - JOUR
AU  - D. Potapov
AU  - F. Sukochev
TI  - Double Operator Integrals and Submajorization
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 317
EP  - 339
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/
DO  - 10.1051/mmnp/20105414
LA  - en
ID  - MMNP_2010_5_4_a14
ER  - 
%0 Journal Article
%A D. Potapov
%A F. Sukochev
%T Double Operator Integrals and Submajorization
%J Mathematical modelling of natural phenomena
%D 2010
%P 317-339
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/
%R 10.1051/mmnp/20105414
%G en
%F MMNP_2010_5_4_a14
D. Potapov; F. Sukochev. Double Operator Integrals and Submajorization. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 317-339. doi : 10.1051/mmnp/20105414. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105414/

[1] T. Ando Comparison of norms |||f(A) − f(B) ||| and |||f(|A − B|) ||| Math. Z. 1988 403 409

[2] N. A. Azamov, A. L. Carey, P. G. Dodds, F. A. Sukochev Operator integrals, spectral shift, and spectral flow Canad. J. Math. 2009 241 263

[3] M. Š. Birman, L. S. Koplienko, M. Z. Solomjak Estimates of the spectrum of a difference of fractional powers of selfadjoint operators Izv. Vysš. Učebn. Zaved. Matematika 1975 3 10

[4] M. S. Birman, M. Z. Solomyak Double Stieltjes operator integrals Problemy Mat. Fiz. 1966 33 67

[5] M. S. Birman, M. Z. Solomyak Double Stieltjes operator integrals, II Problemy Mat. Fiz. 1967 26 60

[6] M. S. Birman, M. Z. Solomyak Double Stieltjes operator integrals, III Problemy Mat. Fiz. 1973 27 53

[7] Yu. L. Daleckiĭ, S.G. Kreĭn Formulas of differentiation according to a parameter of functions of Hermitian operators Doklady Akad. Nauk SSSR (N.S.) 1951 13 16

[8] Yu. L. Daleckiĭ, S.G. Kreĭn Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. 1956 81 105

[9] A. L. Carey, D. S. Potapov, F. A. Sukochev Spectral flow is the integral of one forms on Banach manifolds of self adjoint Fredholm operators Adv. Math 2009 1809 1849

[10] A. Connes, H. Moscovici Transgression du caractère de Chern et cohomologie cyclique C. R. Acad. Sci. Paris Sér. I Math. 1986 913 918

[11] P. G. Dodds, T. K. Dodds On a submajorization inequality of T. Ando. Operator theory in function spaces and Banach lattices Oper. Theory Adv. Appl. 1995 113 131

[12] P. G. Dodds, F.A. Sukochev Submajorisation inequalities for convex and concave functions of sums of measurable operators Positivity 2009 107 124

[13] I.C. Gohberg. M.G. Kreĭn. Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, Providence, R.I., AMS, 18, 1969.

[14] N.J. Kalton, F.A Sukochev Symmetric norms and spaces of operators J. Reine Angew. Math. 621 2008 81 121

[15] H. Kosaki. Positive definiteness of functions with applications to operator norm inequalities. Preprint, 2009.

[16] B. De Pagter, F. A. Sukochev Differentiation of operator functions in non-commutative Lp-spaces J. Funct. Anal. 2004 28 75

[17] B. De Pagter, F. A. Sukochev Commutator estimates and R-flows in non-commutative operator spaces Proc. Edinb. Math. Soc. 2007 293 324

[18] B. De Pagter, F. A. Sukochev, H. Witvliet Double operator integrals J. Funct. Anal. 2002 52 111

[19] F. Gesztesy, A. Pushnitski, B. Simon On the Koplienko spectral shift function. I. Basics Zh. Mat. Fiz. Anal. Geom. 2008 63 107

[20] E. Heinz Beiträge zur Störungstheorie der Spektralzerlegung Math. Ann. 1951 415 438

[21] A. McIntosh. Heinz inequalities and perturbation of spectral families. Macquarie Mathematical Reports, 79–0006 (1979).

[22] G. Pisier, Q. Xu. Non-commutative Lp-spaces. Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1459–1517.

[23] D. Potapov, F. Sukochev Lipschitz and commutator estimates in symmetric operator spaces J. Operator Theory 2008 211 234

[24] D. Potapov, F. Sukochev Unbounded Fredholm modules and double operator integrals J. Reine Angew. Math. 2009 159 185

[25] I.E. Segal A non-commutative extension of abstract integration Annals of Mathematics 1953 401 457

[26] B. Simon. Trace ideals and their applications. Mathematical Surveys and Monographs, AMS, Providence, RI, 120 (2005).

[27] F. A. Sukochev, V. I. Chilin The triangle inequality for operators that are measurable with respect to Hardy-Littlewood order Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 1988 44 50

[28] F. A. Sukochev, V. I. Chilin Symmetric spaces over semifinite von Neumann algebras Soviet Math. Dokl. 1991 97 101

[29] F. A. Sukochev, V. I. Chilin Weak convergence in non-commutative symmetric spaces J. Operator Theory 1994 35 65

[30] J. Von Neumann Some matrix inequalities and metrization of matric-space Rev. Tomsk Univ. 1937 286 300

Cité par Sources :