Voir la notice de l'article provenant de la source EDP Sciences
A. Iantchenko 1 ; E. Korotyaev 2
@article{MMNP_2010_5_4_a8, author = {A. Iantchenko and E. Korotyaev}, title = {Schr\"odinger {Operator} on the {Zigzag} {Half-Nanotube} in {Magnetic} {Field}}, journal = {Mathematical modelling of natural phenomena}, pages = {175--197}, publisher = {mathdoc}, volume = {5}, number = {4}, year = {2010}, doi = {10.1051/mmnp/20105408}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/} }
TY - JOUR AU - A. Iantchenko AU - E. Korotyaev TI - Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field JO - Mathematical modelling of natural phenomena PY - 2010 SP - 175 EP - 197 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/ DO - 10.1051/mmnp/20105408 LA - en ID - MMNP_2010_5_4_a8 ER -
%0 Journal Article %A A. Iantchenko %A E. Korotyaev %T Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field %J Mathematical modelling of natural phenomena %D 2010 %P 175-197 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/ %R 10.1051/mmnp/20105408 %G en %F MMNP_2010_5_4_a8
A. Iantchenko; E. Korotyaev. Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 175-197. doi : 10.1051/mmnp/20105408. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/
[1] Adiabatic quantum transport in multiply connected systems Rev. Modern Phys. 1988 873 915
, ,[2] A duality between Schrödinger operators on graphs and certain Jacobi matrices Ann. Inst. H. Poincaré Phys. Theor. 1997 359 371
[3] P. Harris. Carbon Nanotubes and Related Structures. Cambridge Univ. Press., Cambridge, 1999.
[4] A. Iantchenko, E. Korotyaev. Periodic Jacobi operators with finitely supported perturbations on the half-line. Preprint, 2009.
[5] Helical microtubules of graphitic carbon Nature 1991 56 58
[6] Effective masses for zigzag nanotubes in magnetic fields Lett. Math. Phys. 2008 83 95
[7] E. Korotyaev. Resonances for Schrödinger operator with periodic plus compactly supported potentials on the half-line. Preprint, 2008.
[8] E. Korotyaev, A. Kutsenko. Zigzag nanoribbons in external electric Fields. To appear in Asympt. Anal.
[9] E. Korotyaev, A. Kutsenko. Zigzag and armchair nanotubes in external fields. To appear in Diff. Equations: Systems, Applications and Analysis. Nova Science Publishers, Inc.
[10] Schrödinger operators on zigzag periodic graphs Ann. Henri Poincaré 2007 1151 1176
,[11] E. Korotyaev, I. Lobanov. Zigzag periodic nanotube in magnetic field. Preprint, 2006.
[12] On the spectra of carbon nano-structures Commun. Math. Phys. 2007 805 826
,[13] The spectrum of Jacobi matrices Invent. Math. 1976 45 81
[14] Electron properties of carbon nanotubes in a periodic potential Physical Rev. 2005
[15] The diamagnetic anisotropy of aromatic molecules J. of Chem. Phys. 1936 673 677
[16] Spectra of Schrödinger operators on equilateral quantum graphs Lett. Math. Phys. 2006 139 154
[17] Essential spectra of difference operators on Zn-periodic graphs J. Phys. A: Math. Theor. 2007
,[18] Free-electron network model for conjugated systems. I. Theory J. of Chem. Phys. 1953 1565 1581
,[19] R. Saito, G. Dresselhaus, M. Dresselhaus. Physical properties of carbon nanotubes. Imperial College Press, 1998.
[20] G. Teschl. Jacobi operators and completely integrable nonlinear lattices. Providence, RI: AMS, (2000) ( Math. Surveys Monographs, V. 72.)
[21] E.B. Vinberg.A Course in Algebra. Graduate studies in Mathematics, AMS, V. 56.
Cité par Sources :