Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 175-197.

Voir la notice de l'article provenant de la source EDP Sciences

We consider the zigzag half-nanotubes (tight-binding approximation) in a uniform magnetic field which is described by the magnetic Schrödinger operator with a periodic potential plus a finitely supported perturbation. We describe all eigenvalues and resonances of this operator, and theirs dependence on the magnetic field. The proof is reduced to the analysis of the periodic Jacobi operators on the half-line with finitely supported perturbations.
DOI : 10.1051/mmnp/20105408

A. Iantchenko 1 ; E. Korotyaev 2

1 Institute of Mathematics and Physics, Aberystwyth Univ., Penglais, Ceredigion, SY23 3BZ, UK
2 School of Mathematics, Cardiff Univ., Senghennydd Road, Cardiff, CF24 4AG, UK
@article{MMNP_2010_5_4_a8,
     author = {A. Iantchenko and E. Korotyaev},
     title = {Schr\"odinger {Operator} on the {Zigzag} {Half-Nanotube} in {Magnetic} {Field}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {175--197},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105408},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/}
}
TY  - JOUR
AU  - A. Iantchenko
AU  - E. Korotyaev
TI  - Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 175
EP  - 197
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/
DO  - 10.1051/mmnp/20105408
LA  - en
ID  - MMNP_2010_5_4_a8
ER  - 
%0 Journal Article
%A A. Iantchenko
%A E. Korotyaev
%T Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field
%J Mathematical modelling of natural phenomena
%D 2010
%P 175-197
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/
%R 10.1051/mmnp/20105408
%G en
%F MMNP_2010_5_4_a8
A. Iantchenko; E. Korotyaev. Schrödinger Operator on the Zigzag Half-Nanotube in Magnetic Field. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 175-197. doi : 10.1051/mmnp/20105408. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105408/

[1] J.E. Avron, A. Raveh, B. Zur Adiabatic quantum transport in multiply connected systems Rev. Modern Phys. 1988 873 915

[2] P. Exner A duality between Schrödinger operators on graphs and certain Jacobi matrices Ann. Inst. H. Poincaré Phys. Theor. 1997 359 371

[3] P. Harris. Carbon Nanotubes and Related Structures. Cambridge Univ. Press., Cambridge, 1999.

[4] A. Iantchenko, E. Korotyaev. Periodic Jacobi operators with finitely supported perturbations on the half-line. Preprint, 2009.

[5] S. Iijima Helical microtubules of graphitic carbon Nature 1991 56 58

[6] E. Korotyaev Effective masses for zigzag nanotubes in magnetic fields Lett. Math. Phys. 2008 83 95

[7] E. Korotyaev. Resonances for Schrödinger operator with periodic plus compactly supported potentials on the half-line. Preprint, 2008.

[8] E. Korotyaev, A. Kutsenko. Zigzag nanoribbons in external electric Fields. To appear in Asympt. Anal.

[9] E. Korotyaev, A. Kutsenko. Zigzag and armchair nanotubes in external fields. To appear in Diff. Equations: Systems, Applications and Analysis. Nova Science Publishers, Inc.

[10] E. Korotyaev, I. Lobanov Schrödinger operators on zigzag periodic graphs Ann. Henri Poincaré 2007 1151 1176

[11] E. Korotyaev, I. Lobanov. Zigzag periodic nanotube in magnetic field. Preprint, 2006.

[12] P. Kuchment, O. Post On the spectra of carbon nano-structures Commun. Math. Phys. 2007 805 826

[13] P. Van Moerbeke The spectrum of Jacobi matrices Invent. Math. 1976 45 81

[14] D.S. Novikov Electron properties of carbon nanotubes in a periodic potential Physical Rev. 2005

[15] L. Pauling The diamagnetic anisotropy of aromatic molecules J. of Chem. Phys. 1936 673 677

[16] K. Pankrashkin Spectra of Schrödinger operators on equilateral quantum graphs Lett. Math. Phys. 2006 139 154

[17] V. Rabinovich, S. Roch Essential spectra of difference operators on Zn-periodic graphs J. Phys. A: Math. Theor. 2007

[18] K. Ruedenberg, C.W. Scherr Free-electron network model for conjugated systems. I. Theory J. of Chem. Phys. 1953 1565 1581

[19] R. Saito, G. Dresselhaus, M. Dresselhaus. Physical properties of carbon nanotubes. Imperial College Press, 1998.

[20] G. Teschl. Jacobi operators and completely integrable nonlinear lattices. Providence, RI: AMS, (2000) ( Math. Surveys Monographs, V. 72.)

[21] E.B. Vinberg.A Course in Algebra. Graduate studies in Mathematics, AMS, V. 56.

Cité par Sources :