Weak Asymptotics for Schrödinger Evolution
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 150-157.

Voir la notice de l'article provenant de la source EDP Sciences

In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.
DOI : 10.1051/mmnp/20105406

S. A. Denisov 1

1 University of Wisconsin–Madison, Mathematics Department 480 Lincoln Dr., Madison, WI, 53706, USA
@article{MMNP_2010_5_4_a6,
     author = {S. A. Denisov},
     title = {Weak {Asymptotics} for {Schr\"odinger} {Evolution}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {150--157},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {2010},
     doi = {10.1051/mmnp/20105406},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105406/}
}
TY  - JOUR
AU  - S. A. Denisov
TI  - Weak Asymptotics for Schrödinger Evolution
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 150
EP  - 157
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105406/
DO  - 10.1051/mmnp/20105406
LA  - en
ID  - MMNP_2010_5_4_a6
ER  - 
%0 Journal Article
%A S. A. Denisov
%T Weak Asymptotics for Schrödinger Evolution
%J Mathematical modelling of natural phenomena
%D 2010
%P 150-157
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105406/
%R 10.1051/mmnp/20105406
%G en
%F MMNP_2010_5_4_a6
S. A. Denisov. Weak Asymptotics for Schrödinger Evolution. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 150-157. doi : 10.1051/mmnp/20105406. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105406/

[1] M. Christ, A. Kiselev Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials Geom. Funct. Anal. 2002 1174 1234

[2] S. Denisov Wave equation with slowly decaying potential: asymptotics of solution and wave operators Math. Model. Nat. Phenom. 2010 122 149

Cité par Sources :