Weak Asymptotics for Schrödinger Evolution
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 150-157
Voir la notice de l'article provenant de la source EDP Sciences
In this short note, we apply the technique developed in [Math. Model. Nat. Phenom., 5 (2010), No. 4, 122-149] to study the long-time evolution for Schrödinger equation with slowly decaying potential.
@article{10_1051_mmnp_20105406,
author = {S. A. Denisov},
title = {Weak {Asymptotics} for {Schr\"odinger} {Evolution}},
journal = {Mathematical modelling of natural phenomena},
pages = {150--157},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {2010},
doi = {10.1051/mmnp/20105406},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105406/}
}
TY - JOUR AU - S. A. Denisov TI - Weak Asymptotics for Schrödinger Evolution JO - Mathematical modelling of natural phenomena PY - 2010 SP - 150 EP - 157 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105406/ DO - 10.1051/mmnp/20105406 LA - en ID - 10_1051_mmnp_20105406 ER -
S. A. Denisov. Weak Asymptotics for Schrödinger Evolution. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 4, pp. 150-157. doi: 10.1051/mmnp/20105406
[1] , Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials Geom. Funct. Anal. 2002 1174 1234
[2] Wave equation with slowly decaying potential: asymptotics of solution and wave operators Math. Model. Nat. Phenom. 2010 122 149
Cité par Sources :