Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2010_5_3_a8, author = {D. Hong and F. Zhang}, title = {Weighted {Elastic} {Net} {Model} for {Mass} {Spectrometry} {Imaging} {Processing}}, journal = {Mathematical modelling of natural phenomena}, pages = {115--133}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {2010}, doi = {10.1051/mmnp/20105308}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105308/} }
TY - JOUR AU - D. Hong AU - F. Zhang TI - Weighted Elastic Net Model for Mass Spectrometry Imaging Processing JO - Mathematical modelling of natural phenomena PY - 2010 SP - 115 EP - 133 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105308/ DO - 10.1051/mmnp/20105308 LA - en ID - MMNP_2010_5_3_a8 ER -
%0 Journal Article %A D. Hong %A F. Zhang %T Weighted Elastic Net Model for Mass Spectrometry Imaging Processing %J Mathematical modelling of natural phenomena %D 2010 %P 115-133 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105308/ %R 10.1051/mmnp/20105308 %G en %F MMNP_2010_5_3_a8
D. Hong; F. Zhang. Weighted Elastic Net Model for Mass Spectrometry Imaging Processing. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 115-133. doi : 10.1051/mmnp/20105308. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105308/
[1] Better subset regression using the nonnegative garrote Technometrics 1995 373 384
[2] Profiling and imaging proteins in tissue sections by MS Anal. Chem. 2004 86A 93A
, , ,[3] G. Chu, B. Narasimhan, R. Tibshirani, V.G. Tusher. SAM Version 1.12: user’s guide and technical document.[http://www-stat.stanford.edu/ tibs/SAM/]
[4] The dantzig selector: statistical estimation when p is much larger than n Annals of Statistics 2007
,[5] Least angle regression Annals of Statistics 2004 407 499
, ,[6] Variable selection via nonconcave penalized Likelihood and Its Oracle Properties Journal of the American Statistical Association 2001 1348 1360
,[7] A statistical view of some chemometrics regression tools Technometrics 1993 109 148
,[8]
[9] Information from complexity: challenges of TOF-SIMS data interpretation Applied surface science 2006 6860 6868
, ,[10] Geometric representation of high dimension low sample size data J. R. Statist. Soc. B 2005
, ,[11]
[12] Ridge regression: Biased estimation for nonorthogonal problems Technometrics 1970 55 67
,[13] Asymptotic properties of bridge estimators in sparse high-dimensional regression models Annals Statatistics 2008 587 613
, ,[14] Adaptive Lasso for sparse high dimensional regression models Stat Sin 2008 1603 1618
, ,[15] DASSO: connections between the Dantzig selector and lasso J. R. Statist. Soc. B 2009
, ,[16] J. Jia, B. Yu. On model selection consistency of the elastic net when p ≫ n. Tech. Report 756, Statistics, UC Berkeley, 2008.
[17] Asymptotics for Lasso-type estimators Annals Statistics 2000 1356 1378
,[18] P53 regulates mitochondrial respiration Science 2006 1650 1653
, , , , , , , ,[19] Penalized feature selection and classification in bioinformatics Brief in Bioinform. 2008 392 403
,[20] Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives Mitochondrion 2009 165 179
[21] Spatial and Spectral correlation in MALDI mass spectrometry images by clustering and multivariate analysis Anal. Chem. 2005 6118 6124
, , ,[22] Lasso-type recovery of sparse representations for high-dimensional data Annals of Statistics 2009 246 270
,[23] Biomarker discovery by imaging mass spectrometry: transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat Mol Cell Proteomics 2006 1876 1886
, , , , , , , , , , , ,[24] E.R. Muir, I.J. Ndiour, N.A. Le Goasduff, R.A. Moffitt, Y. Liu, M.C. Sullards, A.H. Merrill, Y. Chen, M.D. Wang. Multivariate analysis of imaging mass spectrometry data. BIBE 2007 proceedings of the 7th IEEE international conference 472-479.
[25] Regression shrinkage and selection via the lasso J. R. Statist. Soc., Series B. 1996 267 288
[26] On the nonnegative garrote estimator J. R. Statist. Soc. B. 2007 143 161
,[27] F. Zhang, D. Hong, S. Frappier, D.S. Cornett, R.M. Caprioli. Elastic Net Based Framework for Imaging Mass Spectrometry Data Biomarker Selection and Classification. Manuscript, 2009.
[28] Gene selection using support vector machines with non-convex penalty Bioinformatics 2006 88 95
, , ,[29] On model selection consistency of lasso The Journal of Machine Learning Research 2006 2541 2563
,[30] S. Zhou, S. Geer, P. Buhlmann. Adaptive lasso for high dimensional regression and gaussian graphical modeling. manuscript, 2009.
[31] The adaptive lasso and its oracle properties Journal of the American Statistical Association 2006 1418 1429
[32] Regularization and variable selection via the elastic net J. R. Statist. Soc., B. 2005 301 320
,[33] On the adaptive elastic-net with a diverging number of parameters Annals of statistics 2009 1733 1751
,Cité par Sources :