Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 15-27.

Voir la notice de l'article provenant de la source EDP Sciences

Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. The lingering controversies related to various diseases are highlighted. A simple biomathematical model of bone marrow - peripheral blood dynamics in the normal state is proposed and used to investigate cell behavior in normal hematopoiesis from a mathematical viewpoint. Analysis of the steady state and properties of the model are used to make postulations about the phenomenon of massive apoptosis in MDS. Simulations of the model show situations in which homeostatic equilibrium can be achieved and maintained. Consequently, it is postulated that hematopoietic growth factors may possess the capabilities of preventing oscillatory dynamics and enhancing faster evolution towards homeostatic equilibrium.
DOI : 10.1051/mmnp/20105302

E. Afenya 1 ; S. Mundle 2

1 Department of Mathematics, Elmhurst College, 60126 Elmhurst, USA
2 Department of Biochemistry, Rush University Medical Center, 60565 Naperville, USA
@article{MMNP_2010_5_3_a2,
     author = {E. Afenya and S. Mundle},
     title = {Hematologic {Disorders} and {Bone} {Marrow{\textendash}Peripheral} {Blood} {Dynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {15--27},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2010},
     doi = {10.1051/mmnp/20105302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105302/}
}
TY  - JOUR
AU  - E. Afenya
AU  - S. Mundle
TI  - Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 15
EP  - 27
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105302/
DO  - 10.1051/mmnp/20105302
LA  - en
ID  - MMNP_2010_5_3_a2
ER  - 
%0 Journal Article
%A E. Afenya
%A S. Mundle
%T Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics
%J Mathematical modelling of natural phenomena
%D 2010
%P 15-27
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105302/
%R 10.1051/mmnp/20105302
%G en
%F MMNP_2010_5_3_a2
E. Afenya; S. Mundle. Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 15-27. doi : 10.1051/mmnp/20105302. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105302/

[1] A. Raza, S. Gezer, S. Mundle, X. Gao, S. Alvi, R. Borok, S. Rifkin, A. Iftikhar, V. Shetty, A. Parcharidou, J. Loew, B. Marcus, Z. Khan, C. Chaney, J. Showel, S. Gregory, H. Preisler Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes Blood 1995 268 276

[2] A. Fokas, J. Keller, B. Clarkson Mathematical model of granulocytopoiesis and chronic myelogenous leukemia Can. Res. 1991

[3] A. Parcharidou, A. Raza, T. Economopoulos, E. Papageorgiou, D. Anagnostou, T. Papadaki, S. Raptis Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labelling (ISEL) technique may be the basis for ineffective hematopoiesis in patients with myelodysplastic syndromes Eur. J. Haemat. 1999 19 26

[4] A. Raza, S. Mundle, A. Iftikhar, S. Gregory, B. Marcus, Z. Khan, S. Alvi, V. Shetty, S. Dameron, V. Wright, S. Adler, J. Loew, S. Shott, S. Ali, H. Preisler Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis Amer. J. Hematol. 1995 143 154

[5] B. Djulbegovic, S. Svetina Mathematical model of acute myeloblastic leukaemia: an investigation of relevant kinetic parameters Cell Tissue Kinet. 1985 307 319

[6] B. Lord, H. Gurney, J. Chang, N. Thatcher, D. Crowther, T. Dexter Haemopoietic cell kinetics in humans treated with RGM-CSF Int. J. Cancer 1992 26 31

[7] B. Lord, N. Testa, S. Bretti, J. Chang, H. Demuynck, L. Coutinho, E. Campos, L. Fitzsimmons, H. Scarffe Haemopoietic progenitor and myeloid cell kinetics in humans treated with interleukin-3 and granulocyte/macrophage colony-stimulating factor in combination Int. J. Cancer 1994 483 490

[8] B. Lowenberg, J. Griffin, M. Tallman. Acute myeloid leukemia and acute promyelocytic leukemia. Amer. Soc. Hematol., 2003

[9] D. Bouscary, J. Vos, M. Guesnu, K. Jondeau, F. Viguier, J. Melle, F. Picard, F. Dreyfus, M. Fontenay-Roupie Fas/Apo-1 (cd95) expression and apoptosis in patients with myelodysplastic syndromes Leuk. 1997 839 845

[10] D. Dale, W. Liles, C. Llewellyn, T. Price Effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) on neutrophil kinetics and function in normal human volunteers Amer. J. Hematol. 1998 7 15

[11] D. Steensma, A. Tefferi The myelodysplastic syndrome(s): a perspective and review highlighting current controversies Leuk. Res. 2003 95 120

[12] E. Afenya, C. Calderon Normal cell decline and inhibition in acute leukemia: a biomathematical modeling approach J. Can. Det. Prev. 1996 171 179

[13] E. Afenya Acute leukemia and chemotherapy: a modeling viewpoint Math. Biosci. 1996 79 100

[14] E. Hellstrom-Lindberg, L. Kanter-Lewensohn, A. Ost Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin Leuk. Res. 1997 415 425

[15] E. Hofer, S. Brucher, K. Mehr, B. Tibken An approach to a biomathematical model lymphocytopoiesis Stem Cells 1995 290 300

[16] H. Foerster. Some remarks on changing populations. In: The Kinetics of Cellular Proliferation (F. Stohlman, Jr., ed.), Grune and Stratton, p. 382, New York, 1959.

[17] H. Wichmann, M. Loeffler, S. Schmitz A concept of hemopoeitic regulation and its biomathematical realization Blood Cells 1988

[18] I. Roeder, M. Herberg, M. Horn An "age"-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia Bull. Math. Biol. 2009 602 626

[19] J. Anderson, F. Appelbaum, L. Fisher, G. Stoch, H. Shulman, C. Anasetti, W. Bensinger, E. Bryant, C. Buckner, K. Doney, P. Martin, J. Sanders, K. Sullivan, E. Thomas, R. Witherspoon, J. Hansen, R. Storb Allogeneic bone marrow transplantation for 93 patients with myelodysplastic syndromes Blood 1993

[20] J. Parker, G. Mufti, F. Rasool, A. Mijovic, S. Devereux, A. Pagliuca the role of apoptosis, proliferation, and bcl-2 related proteins in myelodysplastic syndromes and acute myeloid leukemia secondary to MDS Blood 2000 3932 3938

[21] K. Hara, A. Yasunobu, N. Hirase, M. Shiratsuchi, T. Kihara, J. Nishimura, H. Nawata, K. Muta Apoptosis resistance of mature neutrophils in a case of chronic neutrophilic leukaemia Eur. J. Haematol. 2001 70 71

[22] K. Shimazaki, K. Oshima, J. Suzumiya, C. Kawasaki, M. Kikuchi Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes Br. J. Haemat. 2000 584 590

[23] L. Glass, M. Mackey. From clocks to chaos. Princeton University Press, Princeton, 1988.

[24] M. Aljurf, S. Zaidi Chemotherapy and hematopoietic stem cell transplantation for adult T-cell lymphoblastic lymphoma: current status and controversies Biol. Blood Marrow Transplant. 2005 739 754

[25] M. Mackey, L. Glass Oscillation and chaos in physiological control systems Science 1977 287 289

[26] M. Mackey Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis Blood 1978 941 956

[27] N. Kazarinoff, P. Dendriessche Control of oscillations in hematopoiesis Science 1979 1348 1349

[28] N. Marer, P. Skacel Up-regulation of 2,6 sialylation during myeloid maturation: a potential role in myeloid cell release from the bone marrow J. Cell. Phy. 1999 315 324

[29] O. Scherbaum, G. Rasch cell size distribution and single cell growth in Tetrahymena Pyriformis GL Acta Pathol. Microbiol. Scand. 1957

[30] P. Lepelley, L. Campergue, N. Grardel, C. Preudhomme, A. Cosson, P. Fenaux Is apoptosis a massive process in myelodysplastic syndromes Brit.J. Haematol. 1996 368 371

[31] R. Stone, M. Sekeres, G. Garcia-Maneros, R. Lyons Recent advances in low- and intermediate-1-risk myelodysplastic syndrome: developing a consensus for optimal therapy Clin. Adv. Hematol. Oncol. 2008 1 15

[32] S. Khan, A. Raza, M. Barcos, N. Yousuf, T. Saikia, M. Masterson, J. Bennett, G. Browman, J. Goldberg, H. Grunwald, R. Larson, A. Sandberg, R. Vogler, H. Preisler Cell cycle and clinical characteristics of patients with acute myeloid leukemia and myelodysplasia whose biopsies are reactive with anti-factor VIII antibody Leuk. Res. 1991 51 57

[33] S. Mundle, P. Venugopal, J. Cartlidge, D. Pandav, L. Broady-Robinson, S. Gezer, E. Robin, S. Rifkin, M. Klein, D. Alston, B. Hernandez, D. Rosi, S. Alvi, V. Shetty, S. Gregory, A. Raza Indication of an involvement of interleukin-1 converting enzyme-like protease in intramedullary apoptotic cell death in the bone marrow of patients with myelodysplastic syndromes Blood 1996 2640 2647

[34] S. Mundle, V. Shetty, A. Raza. Caspases and apoptosis in myelodysplastic syndromes. Letters to the Editor/Exp. Hematol., (2000), 1–2.

[35] S. Mundle Lingering dilemmas about the status of progenitor cells in myelodysplasia Arch. Med. Res. 2003 515 519

[36] S. Rubinow, J. Lebowitz A mathematical model of neutrophil production and control in normal man J. Math. Biol. 1975 187 225

[37] S. Rubinow, J. Lebowitz A mathematical model of the acute myeloblastic leukemic state in man Biophys. J. 1976 897 910

[38] S. Schmitz, H. Franke, J. Brusis, H. Wichmann 1993 Quantification of the cell kinetic effects of G-CSF using a model of human granulopoiesis Exp. Hematol. 1993 755 760

[39] S. Schrier Hematopoiesis and red blood cell function Sci. Am. Med. 1988 2 8

[40] T. Price, G. Chatta, D. Dale Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans Blood 1996 335 340

[41] U. Creutzig, D. Reinhardt, M. Zimmermann, T. Klingebiel, H. Gadner Intensive chemotherapy versus bone marrow transplantation in pediatric acute myeloid leukemia: a matter of controversies Blood 2001 3671 3672

[42] V. Shetty, S. Hussaini, L. Broady-Robinson, K. Allampallam, S. Mundle, R. Borok, E. Broderick, L. Mazzoran, F. Zorat, A. Raza Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates Blood 2000 1388 1392

[43] W. Stock. Controversies in the treatment of AML: case-based discussion. Amer. Soc. Hematol., 2006

Cité par Sources :