Influenza Transmission in Preschools: Modulation by contact landscapes and interventions
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 3-14.

Voir la notice de l'article provenant de la source EDP Sciences

Epidemiologic data suggest that schools and daycare facilities likely play a major role in the dissemination of influenza. Pathogen transmission within such small, inhomogenously mixed populations is difficult to model using traditional approaches. We developed simulation based mathematical tool to investigate the effects of social contact networks on pathogen dissemination in a setting analogous to a daycare center or grade school. Here we show that interventions that decrease mixing within child care facilities, including limiting the size of social clusters, reducing the contact frequency between social clusters, and eliminating large gatherings, could diminish pathogen dissemination. Moreover, these measures may amplify the effectiveness of vaccination or antiviral prophylaxis, even if the vaccine is not uniformly effective or antiviral compliance is incomplete. Similar considerations should apply to other small, imperfectly mixed populations, such as offices and schools.
DOI : 10.1051/mmnp/20105301

A.A. Adalja 1 ; P.S. Crooke 2 ; J.R. Hotchkiss 3

1 Center for Biosecurity and Department of Critical Care Medicine, University of Pittsburgh
2 Department of Mathematics, Vanderbilt University
3 Departments of Critical Care Medicine and Medicine, University of Pittsburgh
@article{MMNP_2010_5_3_a1,
     author = {A.A. Adalja and P.S. Crooke and J.R. Hotchkiss},
     title = {Influenza {Transmission} in {Preschools:} {Modulation} by contact landscapes and interventions},
     journal = {Mathematical modelling of natural phenomena},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2010},
     doi = {10.1051/mmnp/20105301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105301/}
}
TY  - JOUR
AU  - A.A. Adalja
AU  - P.S. Crooke
AU  - J.R. Hotchkiss
TI  - Influenza Transmission in Preschools: Modulation by contact landscapes and interventions
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 3
EP  - 14
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105301/
DO  - 10.1051/mmnp/20105301
LA  - en
ID  - MMNP_2010_5_3_a1
ER  - 
%0 Journal Article
%A A.A. Adalja
%A P.S. Crooke
%A J.R. Hotchkiss
%T Influenza Transmission in Preschools: Modulation by contact landscapes and interventions
%J Mathematical modelling of natural phenomena
%D 2010
%P 3-14
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105301/
%R 10.1051/mmnp/20105301
%G en
%F MMNP_2010_5_3_a1
A.A. Adalja; P.S. Crooke; J.R. Hotchkiss. Influenza Transmission in Preschools: Modulation by contact landscapes and interventions. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 3, pp. 3-14. doi : 10.1051/mmnp/20105301. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105301/

[1] L.J. Radonovich, B.S. Bender Children Should Be Among the Highest Priority Groups to Receive Immunization for Seasonal and Pandemic Influenza Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science 2007 363 366

[2] K.M. Neuzil, Y. Zhu, M.R. Griffin, K.M. Edwards, J.M. Thompson, S.J. Tollefson, P.F. Writght Burden of interpandemic influenza in children younger than 5 years: A 25-year prospective study J. Infect. Dis. 2002 147 152

[3] I.M. Longini, A. Nizam, S.F. Xu, K. Ungchusak, W. Hanshaoworakul, D.A.T. Cummings, M.E. Halloran Containing pandemic influenza at the source Science 2005 1083 1087

[4] N.M. Ferguson, D.A.T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn, D.S. Burke Strategies for containing an emerging influenza pandemic in Southeast Asia Nature 2005 209 214

[5] T.C. Germann, K. Kadau, I.M. Longini, C.A. Macken Mitigation strategies for pandemic influenza in the United States Proc Natl. Acad. Sci. USA 2006 5935 5940

[6] N.M. Ferguson, D.A.T. Cummings, C. Fraser, J.C. Cajka, P.C. Cooley, D.S. Burke Strategies for mitigating an influenza pandemic Nature 2006 448 452

[7] M.E. Halloran, N.M. Ferguson, S. Eubank, I.M. Longini, D.A.T. Cummings, B. Lewis, S.F. Xu, C. Fraser, A. Vullikanti, T.C. Germann, D. Wagner, R. Beckman, K. Kadau, C. Barrett, C.A. Macken, D.S. Burke, P.C. Cooley Modeling targeted layered containment of an influenza pandemic in the United States Proc. Natl. Acad. Sci. USA 2008 4639 4644

[8] L. Ancel Meyers, M.E. Newman, M. Martin, S. Schrag Applying network theory to epidemics: control measures for Mycoplasma pneumoniae outbreaks Emerg. Infect. Dis. 2003 204 210

[9] S. Bansal, B.T. Grenfell, L.A. Meyers When individual behaviour matters: homogeneous and network models in epidemiology JR. Soc. Interface 2007 879 891

[10] J.R. Hotchkiss, D.G. Strike, D.A. Simonson, A.F. Broccard, P.S. Crooke An agent-based and spatially explicit model of pathogen dissemination in the intensive care unit Crit. Care. Med. 2005 168 176

[11] W.G. Wilson Resolving discrepancies between deterministic population models and individual-based simulations Am. Nat. 1998 116 134

[12] M.E. Halloran, F.G. Hayden, Y. Yang, I.M. Longini, A.S. Monto Antiviral effects on influenza viral transmission and pathogenicity: observations from household-based trials Am. J. Epidemiol. 2007 212 221

[13] F.G. Hayden, R.L. Atmar, M. Schilling, C. Johnson, D. Poretz, D. Paar, L. Huson, P. Ward, R.G. Mills Use of the selective oral neuraminidase inhibitor oseltamivir to prevent influenza N. Engl. J. Med. 1999 1336 1343

[14] F.G. Hayden, J.J. Treanor, R.S. Fritz, M. Lobo, R.F. Miller, N. Kinnersley, R.G. Mills, P. Ward, S.E. Straus Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment J. Am. Med. Assoc. 1999 1240 1246

[15] D. Weycker, J. Edelsbeg, M.E. Halloran, I.M. Longini, A. Nizam, V. Ciuyla, G. Oster Population-wide benefits of routine vaccination of children against influenza Vaccine 2005 1284 1293

[16] M.M. Wagner, L.S. Gresham, V. Dato. Case. Detection, Outbreak Detection and Outbreak Characterization. M.M. Wagner, A.W. Moore and R.M. Aryel(Eds) In Handbook of Biosurveillance, Elsevier, Burlington, 2006, 27–51.

[17] J. Stein, J. Louie, S. Flanders, J. Maselli, J. Hacker, W.L. Drew, R. Gonzales Performance characteristics of clinical diagnosis, a clinical decision rule, and a rapid influenza test in the detection of influenza infection in a community sample of adults Ann. Emerg. Med. 2005 412 419

[18] J.R. Hotchkiss, P. Holley, P.S. Crooke Analyzing Pathogen Transmission in the Dialysis Unit: Time for a (Schedule) Change? Clin. J. Am. Soc. Nephrol. 2007 1176 1185

[19] I.M. Longini, M.E. Halloran, A. Nizam, M. Wolff, P.M. Mendelman, P.E. Fast, R.B. Belshe Estimation of the efficacy of live, attenuated influenza vaccine from a two-year, multi-center vaccine trial: implications for influenza epidemic control Vaccine 2000 1902 1909

[20] H. Markel, H.B. Lipman, J.A. Navarro, J.A. Navarro, A. Sloan, J. Michalsen, A.M. Stern, M.S. Cetron Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic J. Am. Med. Assoc. 2007 644 654

Cité par Sources :