Indecision in Neural Decision Making Models
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 125-145.

Voir la notice de l'article provenant de la source EDP Sciences

Computational models for human decision making are typically based on the properties of bistable dynamical systems where each attractor represents a different decision. A limitation of these models is that they do not readily account for the fragilities of human decision making, such as “choking under pressure”, indecisiveness and the role of past experiences on current decision making. Here we examine the dynamics of a model of two interacting neural populations with mutual time–delayed inhibition. When the input to each population is sufficiently high, there is bistability and the dynamics is determined by the relationship of the initial function to the separatrix (the stable manifold of a saddle point) that separates the basins of attraction of two co–existing attractors. The consequences for decision making include long periods of indecisiveness in which trajectories are confined in the neighborhood of the separatrix and wrong decision making, particularly when the effects of past history and irrelevant information (“noise”) are included. Since the effects of delay, past history and noise on bistable dynamical systems are generic, we anticipate that similar phenomena will arise in the setting of other physical, chemical and neural time–delayed systems which exhibit bistability.
DOI : 10.1051/mmnp/20105205

J. Milton 1 ; P. Naik 2 ; C. Chan 3 ; S. A. Campbell 4

1 Joint Science Department, The Claremont Colleges, Claremont, CA 91711, USA
2 Pomona College, The Claremont Colleges, Claremont, CA 91711, USA
3 Harvey Mudd College, The Claremont Colleges, Claremont, CA 91711, USA
4 Department of Applied Mathematics, University of Waterloo, Canada
@article{MMNP_2010_5_2_a5,
     author = {J. Milton and P. Naik and C. Chan and S. A. Campbell},
     title = {Indecision in {Neural} {Decision} {Making} {Models}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {125--145},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2010},
     doi = {10.1051/mmnp/20105205},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105205/}
}
TY  - JOUR
AU  - J. Milton
AU  - P. Naik
AU  - C. Chan
AU  - S. A. Campbell
TI  - Indecision in Neural Decision Making Models
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 125
EP  - 145
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105205/
DO  - 10.1051/mmnp/20105205
LA  - en
ID  - MMNP_2010_5_2_a5
ER  - 
%0 Journal Article
%A J. Milton
%A P. Naik
%A C. Chan
%A S. A. Campbell
%T Indecision in Neural Decision Making Models
%J Mathematical modelling of natural phenomena
%D 2010
%P 125-145
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105205/
%R 10.1051/mmnp/20105205
%G en
%F MMNP_2010_5_2_a5
J. Milton; P. Naik; C. Chan; S. A. Campbell. Indecision in Neural Decision Making Models. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 2, pp. 125-145. doi : 10.1051/mmnp/20105205. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105205/

[1] S.M. Baer, T. Erneux, J. Rinzel The slow passage through a Hopf bifurcation: Delay, memory effects and resonance SIAM J. Appl. Math. 1989 55 71

[2] S. L. Beilock, T. H. Carr On the fragility of skilled performance: What governs choking under pressure? J. Exper. Psych.: Gen. 2001 701 725

[3] S. L. Beilock, C. A. Culp, L. E. Holt, T. H. Carr More on the fragility of performance: Choking under pressure in mathematical problem solving J. Exp. Psych. 2004 584 600

[4] W. Bialek, M. De Weese Random switching and optimal processing in the perception of ambiguous signals Phys. Rev. Lett. 1995 3077 3079

[5] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, J. D. Cohen The physics of optimal decision making: A formal analysis of models of performance in two–alternative forced–choice tasks Psych. Rev. 2006 700 765

[6] A. Borsellino, A. Demarco, A. Allazetta, S. Rinsei, B. Bartolini Reversal time distribution in the perception of visual ambiguous stimuli Kybernetik 1972 139 144

[7] K. L. Briggman, H. D. I. Abarbanel, W. B. Kristan Jr Optical imaging of neuronal populations during decision–making Science 2005 896 901

[8] E. Brown, J. Gao, P. Holmes, R. Bogacz, M. Gilzenrat, J. D. Cohen Simple neural networks that optimize decisions Int. J. Bifurc. Chaos 2005 803 826

[9] J. L. Cabrera, J. G. Milton On–off intermittency in a human balancing task Phys. Rev. Lett. 2002

[10] P. J. Choi, L. Cai, K. Fieda, X. S. Xie A stochastic single–molecule event triggers phenotype switching of a bacterial cell Science 2008 442 446

[11] B. Coe, K. Tomihara, M. Matsuzawa, O. Hikosaka Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision–making task J. Neurosci. 2002 5081 5090

[12] K. J. Cole, D. L. Rotella Old age impairs the use of arbitrary visual cues for predicitive control of fingertip forces during grip Exp. Brain Res. 2002 35 41

[13] G. Deco, M. Pérez–Sanagustin, V. De Lafuente, R. Romo Perceptual detection as a dynamical bistability phenomenon: A neurocomputational correlate of sensation Proc. Natl. Acad. Sci. USA 2007 20073 20077

[14] B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems: A guide to XPPAUT for researchers and students. SIAM, Philadelphia, 2002.

[15] C. W. Eurich, J. G. Milton Noise–induced transitions in human postural sway Phys. Rev. E 1996 6681 6684

[16] M. Fairweather. Skill learning principles: implications for coaching practice. In: N. Cross, J. Lyle, eds, The Coaching Process: Principles and Practice for Sport. Butterworth Heinemann, New York, 1999, pp. 113–129.

[17] P. M. Fitts, M. I. Posner. Human performance. Brooks/Cole, Belmont, CA, 1967.

[18] J. Foss, A. Longtin, B. Mensour, J. G. Milton Multistability and delayed recurrent loops Phys. Rev. Lett. 1996 708 711

[19] J. Foss, F. Moss, J. Milton Noise, multistability, and delayed recurrent loops Phys. Rev. E 1997 4536 4543

[20] W. J. Freeman, W. S. Schneider Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors Psychophysiology 1982 44 56

[21] P. W. Glimcher, C. F. Camerer, E. Fehr, R. A. Poldrack, eds. Neuroeconomics: Decision–making and the Brain. Academic Press, New York, 2009.

[22] J. Gotman Measurement of small time differences between EEG channels: method and application to epileptic seizure propagation Electroencephalogr. Clin. Neurophysiol. 1983 403 412

[23] C. Grotta–Ragazzo, K. Pakdaman, C. P. Malta Metastability for delayed differential equations Phys. Rev. E. 1999 6230 6233

[24] B. D. Hatfield, A. J. Haufler, T.–M. Hung, T. W. Spalding Electroencephalographic studies of skilled psychomotor performance J. Clin. Neurophysiol. 2004 144 156

[25] B. D. Hatfield, C. H. Hillman. The psychophysiology of sport: a mechanistic understanding of the psychology of superior performance. In: Handbook of Sport Psychology (R. N. Singer, H. A. Hausenblas, C. M. Janelle, eds). Wiley Sons, New York, 2001, pp. 362–386.

[26] M. Jeannerod, J. Decety Mental motor imagery: a window into the representational stages of action Curr. Opin. Neurobiol. 1995 727 732

[27] J. N. Kim, M. N. Shadlen Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque Nature Neuroscience 1999 176 185

[28] V. B. Kolmanovskii, V. R. Nosov, V. R. Stability of Functional Differential Equations. Academic Press, London, 1986.

[29] P. Kruse, M. Stadler, eds. Ambiguity in Mind and Nature: Multistable cognitive phenomena. Springer, New York, 1995.

[30] D. S. Levine, P. S. Prueitt Modeling some effects of frontal lobe damage – novelty and preservation Neural Net. 1989 103 116

[31] J. Losson, M. C. Mackey, A. Longtin Solution multistability in first order nonlinear delay differential equations Chaos 1993 167 176

[32] M. E. Mazurek, J. D. Roitman, J. Ditterich, M. N. Shadlen A role for neural integrators in perceptual decision making Cereb. Cortex 2003 1257 1269

[33] R. Miller. What is the contribution of axonal conduction delay to temporal structure in brain dynamics?. In: Oscillatory Event–related Brain Dynamics (C. Pantev, ed). Plenum Press: New York, 1994, pp. 53–57.

[34] B. Milner. Some effects of frontal lobectomy in man. In: The frontal granular cortex and behavior (J. Warren, K. Akert, eds). McGraw–Hill: New York, 1964, pp. 313–334.

[35] J. Milton, ed. Focus Issue on Bipedal Locomotion: From robots to humans. Chaos, 19 (2009).

[36] J. G. Milton, J. L. Cabrera, T. Ohira Unstable dynamical systems: Delays, noise and control EPL 2008

[37] J. G. Milton, S. S. Small, A. Solodkin On the road to automatic: Dynamic aspects in the development of expertise J. Clin. Neurophysiol. 2004 134 143

[38] J. Milton, A. Solodkin, P. Hlustik, S. L. Small The mind of expert motor performance is cool and focused NeuroImage 2007 804 813

[39] J. Milton, S. L. Small, A. Solodkin Imaging motor imagery: Methodological issues related to expertise Methods 2008 336 341

[40] K. Oishi, T. Maeshima Autonomic nervous system activities during motor imagery in elite athletes J. Clin. Neurophysiol. 2004 170 179

[41] K. Pakdaman, C. Grotta–Ragazzo, C. P. Malta Transient regime duration in continuous–time neural networks with delay Phys. Rev. E 1998 3623 3627

[42] K. Pakdaman, C. Grotta–Ragazzo, C. P. Malta, O. Arino, J.–F. Vibert Effect of delay on the boundary of the basin of attraction in a system of two neurons Neural Networks 1998 509 519

[43] M. Riani, E. Simonotto Stochastic resonance in the perceptual interpretation of ambiguous figures: A neural network approach Phys. Rev. Lett. 1994 3120 3123

[44] J. Rinzel, S. M. Baer Threshold for repetitive activity for a slow stimulus ramp: A memory effect and its dependence on fluctuations Biophys. J. 1988 551 555

[45] A.G. Sanfey, J. K. Rilling, J. A. Aronson, L. E. Nystrom, J. D. Cohen The neural basis of economic decision–making in the ultimatum game Science 2003 1755 1758

[46] J. D. Schall Neural basis of deciding, choosing, and acting Nat. Neurosci. 2001 33 42

[47] B. Seymour, N. Daw, P. Dayan, T. Somger, R. Dolan Differential encoding of losses and gains in the human straitum J. Neurosci. 2007 4826 4831

[48] M. N. Shadlen, W. T. Newsome Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey J. Neurophysiol. 2001 1916 1936

[49] G. Stépán. Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Group, Essex, 1989.

[50] G. Stépán, T. Insperger Stability of time–periodic and delayed systems - a route to act–and–wait control Annu. Rev. Control 2006 159 168

[51] P. Takác Domains of attraction of generic omega–limit sets for strongly monotone semi–flows Zeitschrift fur Analysis und ihre Answendungen 1991 275 317

[52] A. Thielscher, L. Pessoa Neural correlates of perceptual choice and decision making during fear–disgust discrimination J. Neurosci. 2007 2908 2917

[53] M. Usher, J. L.Mcclelland The time course of perceptual choice: The leaky, competing accumulator model Psychol. Rev. 2001 550 592

[54] X.–J. Wang Probabilistic decisions making by slow reverberation in cortical circuits Neuron 2002 955 968

[55] D. Westen, P. S. Blagov, K. Harenski, C. Kilts, S. Hamann Neural bases of motivated reasoning: An fMRI study of emotional constraints on partisan political judgement in the 2004 U. S. presidential election J. Cog. Neuroscience 2006 1947 1958

[56] K.–F. Wong, X.–J. Wang A recurrent network mechanism of time integration in perceptual decisions J. Neurosci. 2006 1314 1328

Cité par Sources :