Mechanisms of Cell Motion in Confined Geometries
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 84-105.

Voir la notice de l'article provenant de la source EDP Sciences

We present a simple mechanism of cell motility in a confined geometry, inspired by recent motility assays in microfabricated channels. This mechanism relies mainly on the coupling of actin polymerisation at the cell membrane to geometric confinement. We first show analytically using a minimal model of polymerising viscoelastic gel confined in a narrow channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this mechanism does not require specific adhesion with the channel walls, and yields velocities potentially larger than the polymerisation velocity of the gel. We then study the effect of the contractile activity of myosin motors, and show that whilst it is not necessary to induce motion, it quantitatively increases the velocity of motion in the polymerisation mechanism we describe. Our model qualitatively accounts for recent experiments which show that cells without specific adhesion proteins are motile only in confined environments while they are unable to move on a flat surface. It also constitutes a first step in the study of cell migration in more complex confined geometries such as living tissues.
DOI : 10.1051/mmnp/20105104

R. J. Hawkins 1 ; R. Voituriez 1

1 UMR 7600, Université Pierre et Marie Curie/CNRS, 4 Place Jussieu 75255 Paris Cedex 05 France
@article{MMNP_2010_5_1_a4,
     author = {R. J. Hawkins and R. Voituriez},
     title = {Mechanisms of {Cell} {Motion} in {Confined} {Geometries}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {84--105},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2010},
     doi = {10.1051/mmnp/20105104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/}
}
TY  - JOUR
AU  - R. J. Hawkins
AU  - R. Voituriez
TI  - Mechanisms of Cell Motion in Confined Geometries
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 84
EP  - 105
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/
DO  - 10.1051/mmnp/20105104
LA  - en
ID  - MMNP_2010_5_1_a4
ER  - 
%0 Journal Article
%A R. J. Hawkins
%A R. Voituriez
%T Mechanisms of Cell Motion in Confined Geometries
%J Mathematical modelling of natural phenomena
%D 2010
%P 84-105
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/
%R 10.1051/mmnp/20105104
%G en
%F MMNP_2010_5_1_a4
R. J. Hawkins; R. Voituriez. Mechanisms of Cell Motion in Confined Geometries. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 84-105. doi : 10.1051/mmnp/20105104. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/

[1] B. Alberts. Molecular biology of the cell, 4th ed., Garland Science, New York, 2002.

[2] A. Bernheim-Groswasser, S. Wiesner, R. M. Golsteyn, M. F. Carlier, C. Sykes The dynamics of actin-based motility depend on surface parameters Nature 2002 308 311

[3] A. C. Callan-Jones, J.-F. Joanny, J. Prost Viscous-fingering-like instability of cell fragments Phys. Rev. Lett. 2008

[4] Y. Calle, S. Burns, A. J. Thrasher, G. E. Jones The leukocyte podosome. Eur. J. Cell. Biol. 2006 151 157

[5] C. Le Clainche, M.-F. Carlier Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 2008 489 513

[6] M. Dogterom, M.E. Janson, C. Faivre-Moskalenko, A. Van Der Horst, J.W.J. Kerssemakers, C. Tanase, B.M. Mulder Force generation by polymerizing microtubules Applied Physics A: Materials Science & Processing 2002 331 336

[7] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, John O. Kessler Self-concentration and large-scale coherence in bacterial dynamics Phys. Rev. Lett. 2004

[8] G. Faure-André, P. Vargas, M.-I. Yuseff, M. Heuzé, J. Diaz, D. Lankar, V. Steri, J. Manry, S. Hugues, F. Vascotto, J. Boulanger, G. Raposo, M.-R. Bono, M. Rosemblatt, M. Piel, A.-M. Lennon-Duménil Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 2008 1705 1710

[9] F. Gerbal, P. Chaikin, Y. Rabin, J. Prost An elastic analysis of listeria monocytogenes propulsion. Biophys. J. 2000 2259 2275

[10] P. G. de Gennes, J. Prost. The Physics of Liquid Crystals. Oxford. Univ. Press, Oxford, 1993.

[11] Y. Hatwalne, S. Ramaswamy, M. Rao, R. A. Simha Rheology of active-particle suspensions. Phys. Rev. Lett. 2004

[12] R. J. Hawkins, M. Piel, G. Faure-Andre, A. M. Lennon-Dumenil, J. F. Joanny, J. Prost, R. Voituriez Pushing off the walls: a mechanism of cell motility in confinement. Phys. Rev. Lett. 2009

[13] S. F. G. Van Helden, D. J. E. B. Krooshoop, K. C. M. Broers, R. A. P. Raymakers, C. G. Figdor, F. N. Van Leeuwen A critical role for prostaglandin e2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J. Immunol. 2006 1567 1574

[14] F. Julicher, K. Kruse, J. Prost, J. F. Joanny Active behavior of the cytoskeleton Physics Reports 2007 3 28

[15] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, K. Sekimoto Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 2004

[16] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost, K. Sekimoto Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E Soft Matter 2005 5 16

[17] K. Kruse, J. F. Joanny, F. Jülicher, J. Prost Contractility and retrograde flow in lamellipodium motion. Phys Biol 2006 130 137

[18] T. Lämmermann, B. L. Bader, S. J. Monkley, T. Worbs, R. Wedlich-Söldner, K. Hirsch, M. Keller, R. Förster, D. R. Critchley, R. Fässler, M. Sixt Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008 51 55

[19] R. Larson. Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, 1998.

[20] T. B. Liverpool, M. C. Marchetti Instabilities of isotropic solutions of active polar filaments. Phys Rev Lett 2003

[21] S. E. Malawista, A. De Boisfleury Chevance Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (pmn) in the presence of edta: Pmn in close quarters require neither leukocyte integrins nor external divalent cations. Proc. Natl. Acad. Sci. USA 1997 11577 11582

[22] D. Marenduzzo, E. Orlandini, M. E. Cates, J. M. Yeomans Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice boltzmann simulations Phys. Rev. E 2007

[23] D. Marenduzzo, E. Orlandini, M. E. Cates, J. M. Yeomans Lattice boltzmann simulations of spontaneous flow in active liquid crystals: The role of boundary conditions J. Non-Newton. Fluid Mech. 2008 56 62

[24] A. Mogilner, G. Oster Cell motility driven by actin polymerization Biophys J. 1996 3030 3045

[25] V. Narayan, S. Ramaswamy, N. Menon Long-lived giant number fluctuations in a swarming granular nematic Science 2007 105 108

[26] F. J. Nedelec, T. Surrey, A. C. Maggs, S. Leibler Self-organization of microtubules and motors Nature 1997 305 308

[27] T. D. Pollard, G. G. Borisy Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003 453 465

[28] J. M. Serrador, M. Nieto, F. Sánchez-Madrid Cytoskeletal rearrangement during migration and activation of t lymphocytes. Trends. Cell. Biol. 1999 228 233

[29] R. A. Simha, S. Ramaswamy Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 2002

[30] J. A. Theriot, T. J. Mitchison Actin microfilament dynamics in locomoting cells. Nature 1991 126 131

[31] J. Toner, Y. Tu, S. Ramaswamy Hydrodynamics and phases of flocks. Annals of Physics 2005 170 244

[32] R. Voituriez, J. F. Joanny, J. Prost Spontaneous flow transition in active polar gels Europhys. Lett. 2005 404 410

[33] R. Voituriez, J. F. Joanny, J. Prost Generic phase diagram of active polar films. Phys. Rev. Lett. 2006

[34] P. T. Yam, C. A. Wilson, L. Ji, B. Hebert, E. L. Barnhart, N. A. Dye, P. W. Wiseman, G. Danuser, J. A. Theriot Actin myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility The Journal of Cell Biology 2007 1207 1221

[35] A. Zumdieck, R. Voituriez, J. Prost, J. F. Joanny Spontaneous flow of active polar gels in undulated channels Faraday Discuss. 2008

Cité par Sources :