Voir la notice de l'article provenant de la source EDP Sciences
R. J. Hawkins 1 ; R. Voituriez 1
@article{MMNP_2010_5_1_a4, author = {R. J. Hawkins and R. Voituriez}, title = {Mechanisms of {Cell} {Motion} in {Confined} {Geometries}}, journal = {Mathematical modelling of natural phenomena}, pages = {84--105}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2010}, doi = {10.1051/mmnp/20105104}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/} }
TY - JOUR AU - R. J. Hawkins AU - R. Voituriez TI - Mechanisms of Cell Motion in Confined Geometries JO - Mathematical modelling of natural phenomena PY - 2010 SP - 84 EP - 105 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/ DO - 10.1051/mmnp/20105104 LA - en ID - MMNP_2010_5_1_a4 ER -
%0 Journal Article %A R. J. Hawkins %A R. Voituriez %T Mechanisms of Cell Motion in Confined Geometries %J Mathematical modelling of natural phenomena %D 2010 %P 84-105 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/ %R 10.1051/mmnp/20105104 %G en %F MMNP_2010_5_1_a4
R. J. Hawkins; R. Voituriez. Mechanisms of Cell Motion in Confined Geometries. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 84-105. doi : 10.1051/mmnp/20105104. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105104/
[1] B. Alberts. Molecular biology of the cell, 4th ed., Garland Science, New York, 2002.
[2] The dynamics of actin-based motility depend on surface parameters Nature 2002 308 311
, , , ,[3] Viscous-fingering-like instability of cell fragments Phys. Rev. Lett. 2008
, ,[4] The leukocyte podosome. Eur. J. Cell. Biol. 2006 151 157
, , ,[5] Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev. 2008 489 513
,[6] Force generation by polymerizing microtubules Applied Physics A: Materials Science & Processing 2002 331 336
, , , , , ,[7] Self-concentration and large-scale coherence in bacterial dynamics Phys. Rev. Lett. 2004
, , , ,[8] Regulation of dendritic cell migration by CD74, the MHC class II-associated invariant chain. Science 2008 1705 1710
, , , , , , , , , , , , , , ,[9] An elastic analysis of listeria monocytogenes propulsion. Biophys. J. 2000 2259 2275
, , ,[10] P. G. de Gennes, J. Prost. The Physics of Liquid Crystals. Oxford. Univ. Press, Oxford, 1993.
[11] Rheology of active-particle suspensions. Phys. Rev. Lett. 2004
, , ,[12] Pushing off the walls: a mechanism of cell motility in confinement. Phys. Rev. Lett. 2009
, , , , , ,[13] A critical role for prostaglandin e2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J. Immunol. 2006 1567 1574
, , , , ,[14] Active behavior of the cytoskeleton Physics Reports 2007 3 28
, , ,[15] Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 2004
, , , ,[16] Generic theory of active polar gels: a paradigm for cytoskeletal dynamics. Eur. Phys. J. E Soft Matter 2005 5 16
, , , ,[17] Contractility and retrograde flow in lamellipodium motion. Phys Biol 2006 130 137
, , ,[18] Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 2008 51 55
, , , , , , , , , ,[19] R. Larson. Constitutive equations for polymer melts and solutions. Butterworth-Heinemann, 1998.
[20] Instabilities of isotropic solutions of active polar filaments. Phys Rev Lett 2003
,[21] Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (pmn) in the presence of edta: Pmn in close quarters require neither leukocyte integrins nor external divalent cations. Proc. Natl. Acad. Sci. USA 1997 11577 11582
,[22] Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice boltzmann simulations Phys. Rev. E 2007
, , ,[23] Lattice boltzmann simulations of spontaneous flow in active liquid crystals: The role of boundary conditions J. Non-Newton. Fluid Mech. 2008 56 62
, , ,[24] Cell motility driven by actin polymerization Biophys J. 1996 3030 3045
,[25] Long-lived giant number fluctuations in a swarming granular nematic Science 2007 105 108
, ,[26] Self-organization of microtubules and motors Nature 1997 305 308
, , ,[27] Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003 453 465
,[28] Cytoskeletal rearrangement during migration and activation of t lymphocytes. Trends. Cell. Biol. 1999 228 233
, ,[29] Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys Rev Lett 2002
,[30] Actin microfilament dynamics in locomoting cells. Nature 1991 126 131
,[31] Hydrodynamics and phases of flocks. Annals of Physics 2005 170 244
, ,[32] Spontaneous flow transition in active polar gels Europhys. Lett. 2005 404 410
, ,[33] Generic phase diagram of active polar films. Phys. Rev. Lett. 2006
, ,[34] Actin myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility The Journal of Cell Biology 2007 1207 1221
, , , , , , , ,[35] Spontaneous flow of active polar gels in undulated channels Faraday Discuss. 2008
, , ,Cité par Sources :