High Resolution Tracking of Cell Membrane Dynamics in Moving Cells: an Electrifying Approach
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 34-55.

Voir la notice de l'article provenant de la source EDP Sciences

Cell motility is an integral part of a diverse set of biological processes. The quest for mathematical models of cell motility has prompted the development of automated approaches for gathering quantitative data on cell morphology, and the distribution of molecular players involved in cell motility. Here we review recent approaches for quantifying cell motility, including automated cell segmentation and tracking. Secondly, we present our own novel method for tracking cell boundaries of moving cells, the Electrostatic Contour Migration Method (ECMM), as an alternative to the generally accepted level set method (LSM). ECMM smoothly tracks regions of the cell boundary over time to compute local membrane displacements using the simple underlying concept of electrostatics. It offers substantial speed increases and reduced computational overheads in comparison to the LSM. We conclude with general considerations regarding boundary tracking in the context of mathematical modelling.
DOI : 10.1051/mmnp/20105102

R.A. Tyson 1 ; D.B.A. Epstein 2 ; K.I. Anderson 3 ; T. Bretschneider 1

1 University of Warwick, Warwick Systems Biology Centre, Coventry, UK
2 University of Warwick, Warwick Mathematics Institute, Coventry, UK
3 Beatson Institute for Cancer Research, Glasgow, UK
@article{MMNP_2010_5_1_a2,
     author = {R.A. Tyson and D.B.A. Epstein and K.I. Anderson and T. Bretschneider},
     title = {High {Resolution} {Tracking} of {Cell} {Membrane} {Dynamics} in {Moving} {Cells:} an {Electrifying} {Approach}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {34--55},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2010},
     doi = {10.1051/mmnp/20105102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105102/}
}
TY  - JOUR
AU  - R.A. Tyson
AU  - D.B.A. Epstein
AU  - K.I. Anderson
AU  - T. Bretschneider
TI  - High Resolution Tracking of Cell Membrane Dynamics in Moving Cells: an Electrifying Approach
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 34
EP  - 55
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105102/
DO  - 10.1051/mmnp/20105102
LA  - en
ID  - MMNP_2010_5_1_a2
ER  - 
%0 Journal Article
%A R.A. Tyson
%A D.B.A. Epstein
%A K.I. Anderson
%A T. Bretschneider
%T High Resolution Tracking of Cell Membrane Dynamics in Moving Cells: an Electrifying Approach
%J Mathematical modelling of natural phenomena
%D 2010
%P 34-55
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105102/
%R 10.1051/mmnp/20105102
%G en
%F MMNP_2010_5_1_a2
R.A. Tyson; D.B.A. Epstein; K.I. Anderson; T. Bretschneider. High Resolution Tracking of Cell Membrane Dynamics in Moving Cells: an Electrifying Approach. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 34-55. doi : 10.1051/mmnp/20105102. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20105102/

[1] M. Affolter, C. Weijer. Signaling to cytoskeletal dynamics during chemotaxis Developmental Cell 2005 19 34

[2] N. Andrew, R. Insall. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions Nature cell biology 2007 193 200

[3] O. Al-Kofahi, R. Radke, S. Goderie, Q. Shen, S. Temple, B. Roysam. Automated cell lineage construction: A rapid method to analyze clonal development established with murine neural progenitor cells Cell Cycle 2006 327 335

[4] B. Bollobas. Modern graph theory. Springer Verlag, 1998.

[5] L. Bosgraaf, P. Van Haastert, T. Bretschneider. Analysis of cell movement by simultaneous quantification of local membrane displacement and fluorescent intensities using Quimp2 Cell Motility and the Cytoskeleton 2009 156 165

[6] D. Bray. Cell movements: from molecules to motility. Routledge, 2001.

[7] F. Chan, F. Lam, H. Zhu Adaptive thresholding by variational method IEEE Transactions on Image Processing 1998 468 473

[8] L. Cohen. On active contour models and balloons CVGIP: Image understanding 1991 211 218

[9] J. Dalous, E. Burghardt, A. Muller-Taubenberger, F. Bruckert, G. Gerisch, T. Bretschneider. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation Biophysical journal 2008 1063 1074

[10] O. Debeir, I. Camby, R. Kiss, P. Van Ham, C. Decaestecker. A model-based approach for automated in vitro cell tracking and chemotaxis analyses Cytometry Part A 2004 29 40

[11] C. Decaestecker, O. Debeir, P. Van Ham, R. Kiss Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration Medicinal Research Reviews 2007

[12] D. Dormann, T. Libotte, C. Weijer, T. Bretschneider. Simultaneous quantification of cell motility and protein-membrane-association using active contours Cell Motil Cytoskeleton 2002 221 30

[13] T. Driscoll. The Schwarz-Christoffel Toolbox for MATLAB. Available at: http://www.math.udel.edu/ driscoll/software/ . (Accessed: 21 Sep. 2009).

[14] A. Dufour, V. Shinin, S. Tajbakhsh, N. Guillen-Aghion, J. Olivo-Marin, C. Zimmer. Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces IEEE Transactions on Image Proc. 2005 1396 1410

[15] P. Friedl, B. Weigelin Interstitial leukocyte migration and immune function Nature Immunology 2008 960 969

[16] P. Friedl, Y. Hegerfeldt, M. Tusch. Collective cell migration in morphogenesis and cancer Int. J. Dev. Biol. 2004 441 449

[17] P. Heid, J. Geiger, D. Wessels, E. Voss, D. Soll. Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium Journal of cell science 2005 2225 2237

[18] Z. Hou, C. Han. Force field analysis snake: an improved parametric active contour model Pattern Recognition Letters 2005 513 526

[19] L. Ji, J. Lim, G. Danuser Fluctuations of intracellular forces during cell protrusion Nature cell biology 2008 1393 1400

[20] M. Kass, A. Witkin, D. Terzopoulos Snakes: Active contour models International Journal of Computer Vision 1988 321 331

[21] R. Kay, P. Langridge, D. Traynor, O. Hoeller. Changing directions in the study of chemotaxis Nat. Rev. Mol. Cell Bio 2008 455 463

[22] T. Libotte, H. Kaiser, W. Alt, T. Bretschneider Polarity, protrusion–retraction dynamics and their interplay during keratinocyte cell migration Experimental Cell Research 2001 129 137

[23] M. Machacek, G. Danuser. Morphodynamic Profiling of Protrusion Phenotypes Biophysical Journal Biophysical Soc. 2006 1439 1452

[24] M. Machacek, L. Hodgson, C. Welch, H. Elliott, O. Pertz, P. Nalbant, A. Abell, G. Johnson, K. Hahn, G. Danuser Coordination of Rho GTPase activities during cell protrusion Nature 2009 99 103

[25] R. Meili, C. Ellsworth, S. Lee, T. Reddy, H. Ma, R. Firtel. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium The EMBO Journal 1999 2092 2105

[26] K. Miura. Tracking movement in cell biology Advances in Biochemical Engineering Biotechnology 2005 267 296

[27] S. Osher, J. Sethian. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations Journal of computational physics 1988 12 49

[28] A. Ridley, M. Peckham, P. Clark. Cell motility: from molecules to organisms. John Wiley Sons Inc, 2004.

[29] A. Ridley, M. Schwartz, K. Burridge, R. Firtel, M. Ginsberg, G. Borisy, J. Parsons, A. Horwitz. Cell Migration: Integrating Signals from Front to Back Science 2003 1704 1709

[30] A. Sarti, C. Ortiz De Solorzano, S. Lockett, R. Malladi. A geometric model for 3-D confocal image analysis IEEE Transactions on Biomedical Engineering 2000 1600 1609

[31] J. Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge Univ Pr, (1999).

[32] D. Shutt, L. Jenkins, E. Carolan, J. Stapleton, K. Daniels, R. Kennedy, D. Soll. T cell syncytia induced by HIV release. T cell chemoattractants: demonstration with a newly developed single cell chemotaxis chamber J. Cell Sci. 1998 99 109

[33] D. Soll. Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells Computerized medical imaging and graphics 1999 3 14

[34] D. Soll. The use of computers in understanding how animal cells crawl International review of cytology 1995 43 104

[35] B. Sumengen. A Matlab toolbox implementing Level Set Methods. Available at: http://barissumengen.com/level_set_methods/. (Accessed: 21 Sep. 2009)

[36] Y. Tsukada, K. Aoki, T. Nakamura, Y. Sakumura, M. Matsuda, S. Ishii Quantification of local morphodynamics and local GTPase activity by edge evolution tracking PLoS Comp. Bio. 2008

[37] P. Vallotton, A. Ponti, C. Waterman-Storer, E. Salmon, G. Danuser. Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study Biophysical journal 2003 1289 1306

[38] D. Veltman, I. Keizer-Gunnik, P. Van Haastert. Four key signaling pathways mediating chemotaxis in Dictyostelium discoideum Journal of Cell Biology 2008 747 753

[39] D. Wessels, E. Voss, N. Von Bergen, R. Burns, J. Stites, D. Soll. A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells Cell motility and the cytoskeleton 1998 225 246

[40] K. Wu, D. Gauthier, M. Levine Live cell image segmentation IEEE Transactions on Biomedical Engineering 1995 1 12

[41] C. Xu, J. Prince. Snakes, shapes, and gradient vector flow IEEE Transactions on image Processing, IEEE Transactions on image proc., 7 (1998), No. 3, 359–369.

[42] L. Yang, J. Effler, B. Kutscher, S. Sullivan, D. Robinson, P. Iglesias. Modeling cellular deformations using the level set formalism BMC Systems Biology 2008

[43] B. Zhang, C. Zimmer, J. Olivo-Marin. Tracking fluorescent cells with coupled geometric active contours IEEE Inter. Symp. on Biomedical Imaging: Nano to Macro 2004 476 479

Cité par Sources :