Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2009_4_4_a4, author = {T. Miura and R. Tanaka}, title = {In vitro {Vasculogenesis} {Models} {Revisited} - {Measurement} of {VEGF} {Diffusion} in {Matrigel}}, journal = {Mathematical modelling of natural phenomena}, pages = {118--130}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2009}, doi = {10.1051/mmnp/20094404}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094404/} }
TY - JOUR AU - T. Miura AU - R. Tanaka TI - In vitro Vasculogenesis Models Revisited - Measurement of VEGF Diffusion in Matrigel JO - Mathematical modelling of natural phenomena PY - 2009 SP - 118 EP - 130 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094404/ DO - 10.1051/mmnp/20094404 LA - en ID - MMNP_2009_4_4_a4 ER -
%0 Journal Article %A T. Miura %A R. Tanaka %T In vitro Vasculogenesis Models Revisited - Measurement of VEGF Diffusion in Matrigel %J Mathematical modelling of natural phenomena %D 2009 %P 118-130 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094404/ %R 10.1051/mmnp/20094404 %G en %F MMNP_2009_4_4_a4
T. Miura; R. Tanaka. In vitro Vasculogenesis Models Revisited - Measurement of VEGF Diffusion in Matrigel. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 4, pp. 118-130. doi : 10.1051/mmnp/20094404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094404/
[1] S. Gilbert. Developmental Biology. Sinauer, Massachusettes, 2003.
[2] T. Sadler. Langman's Medical Embryology. Lippincott Williams Wilkins, Maryland, 9th edition, 2004.
[3] J. Murray. Mathematical biology. Springer - Verlag, Berlin, third edition, 2003.
[4] W. Aird. Endothelial Biomedicine. Cambridge university press, 2007.
[5] D. Manoussaki, S. Lubkin, R. Vernon, J. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor, 44 (1996) No. 3-4, 271–282.
[6] R. Merks, S. Brodsky, M. Goligorksy, S. Newman, J. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol, 289 (2006) No. 1, 44–54.
[7] G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J, 22 (2003) No. 8, 1771–1779.
[8] D. Berk, F. Yuan, M. Leunig, R. Jain. Fluorescence photobleaching with spatial fourier analysis: measurement of diffusion in light-scattering media. Biophys J, 65 (1993) No. 6, 2428–2436.
[9] M. Chambard, J. Gabrion, J. Mauchamp. Influence of collagen gel on the orientation of epithelial cell polarity: follicle formation from isolated thyroid cells and from preformed monolayers. J Cell Biol, 91 (1981) No. 1, 157–166.
[10] RIMS Kokyuroku Bessatsu 2007 165 176
[11] F. Crick. Diffusion in embryogenesis. Nature, 225 (1970) No. 5231, 420–422.
[12] G. Reeves, C. Muratov, T. Schuepbach, S. Shvartsman. Quantitative models of developmental pattern formation. Dev Cell, 11 (2006) No. 3, 289–300.
[13] Annu Rev Cell Dev Biol 2006 375 407
,[14] A. Okubo. Diffusion and ecological problems: mathematical models. Springer-Verlag, 1980.
[15] J Math Biol 2006 617 641
, ,[16] C. Nicholson, E. Sykova. Extracellular space structure revealed by diffusion analysis. Trends Neurosci, 21 (1998) No. 5, 207–215.
[17] R. Thorne, C. Nicholson. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A, 103 (2006) No. 14, 5567–5572.
[18] F. Gelain, D. Bottai, A. Vescovi, S. Zhang. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE, 1 (2006):e119.
[19] P. Iglesias and P. Devreotes. Navigating through models of chemotaxis. Curr Opin Cell Biol, 20 (2008) No. 1, 35–40.
[20] I. Barkefors, S. Le Jan, L. Jakobsson, E. Hejll, G. Carlson, H. Johansson, J. Jarvius, J. Park, N. Jeon, J. Kreuger. Endothelial cell migration in stable gradients of vascular endothelial growth factor a and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J Biol Chem, 283 (2008) No. 20, 13905–13912.
[21] J. Park, G. Keller, N. Ferrara. The vascular endothelial growth factor (vegf) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound vegf. Mol Biol Cell, 4 (1993) No. 12, 1317–1326.
[22] C. Ruhrberg, H. Gerhardt, M. Golding, R. Watson, S. Ioannidou, H. Fujisawa, C. Betsholtz, D. Shima. Spatially restricted patterning cues provided by heparin-binding vegf-a control blood vessel branching morphogenesis. Genes Dev, 16 (2002) No. 20, 2684–2698.
Cité par Sources :