On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 140-188.

Voir la notice de l'article provenant de la source EDP Sciences

In this survey, we briefly review some of our recent studies on predator-prey models with discrete delay. We first study the distribution of zeros of a second degree transcendental polynomial. Then we apply the general results on the distribution of zeros of the second degree transcendental polynomial to various predator-prey models with discrete delay, including Kolmogorov-type predator-prey models, generalized Gause-type predator-prey models with harvesting, etc. Bogdanov-Takens bifurcations in delayed predator-prey models with nonmonotone functional response and in delayed predator-prey model with predator harvesting are also introduced.
DOI : 10.1051/mmnp/20094207

S. Ruan 1

1 Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA
@article{MMNP_2009_4_2_a6,
     author = {S. Ruan},
     title = {On {Nonlinear} {Dynamics} of {Predator-Prey} {Models} with {Discrete} {Delay}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {140--188},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2009},
     doi = {10.1051/mmnp/20094207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094207/}
}
TY  - JOUR
AU  - S. Ruan
TI  - On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 140
EP  - 188
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094207/
DO  - 10.1051/mmnp/20094207
LA  - en
ID  - MMNP_2009_4_2_a6
ER  - 
%0 Journal Article
%A S. Ruan
%T On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay
%J Mathematical modelling of natural phenomena
%D 2009
%P 140-188
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094207/
%R 10.1051/mmnp/20094207
%G en
%F MMNP_2009_4_2_a6
S. Ruan. On Nonlinear Dynamics of Predator-Prey Models with Discrete Delay. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 2, pp. 140-188. doi : 10.1051/mmnp/20094207. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094207/

[1] J. F. Andrews Biotechnol. Bioeng. 1968 707 723

[2] R. Arditi, J.-M. Abillon, J. V. Da Silva Math. Biosci. 1977 107 120

[3] M. Baptistini, P. Táboas Math. Anal. Appl. 1997 259 272

[4] M. S. Bartlett Biometrika 1957 27 42

[5] J. R. Beddington, J. G. Cooke Ecol. Modelling 1982 155 177

[6] R. Bellman, K. L. Cooke. Differential-difference equations. Academic Press, New York, 1963.

[7] E. Beretta, Y. Kuang J. Math. Anal. Appl. 1996 840 853

[8] E. Beretta, Y. Kuang Nonlinear Anal. 1998 381 408

[9] E. Beretta, Y. Kuang. Geometric stability switch crteria in delay differential equations with delay dependent parameters. SIAM J. Math. Anal., 33(2002), 1144-1165.

[10] F. G. Boes SIAM J. Math. Anal. 1995 1306 1330

[11] F. Brauer Math. Biosci. 1977 345 358

[12] F. Brauer Math. Biosci. 1979 295 311

[13] F. Brauer J. Differential Equations 1987 185 191

[14] F. Brauer, A. C. Soudack J. Math. Biol. 1979 319 337

[15] F. Brauer, A. C. Soudack J. Math. Biol. 1979 55 71

[16] F. Brauer, A. C. Soudack J. Math. Biol. 1981 101 114

[17] M. Brelot Ann. Mat. Pura Appl. 1931 58 74

[18] A. W. Bush, A. E. Cook J. Theoret. Biol. 1976 385 395

[19] Y. Cao, H. I. Freedman J. Austral. Math. Soc. Ser. B 1996 149 162

[20] J. Caperon Ecology 1969 188 192

[21] Y.-S. Chin Acta Math. Sinica 1960 125 142

[22] K. L. Cooke, Z. Grossman J. Math. Anal. Appl. 1982 592 627

[23] K. L. Cooke, P. Van Den Driessche Funkcialaj Ekvacioj 1986 77 90

[24] J. M. Cushing. Integrodifferential Equations and Delay Models in Population Dynamics. Springer-Verlag, Heidelberg, 1977.

[25] J. M. Cushing. Stability and maturation periods in age structured populations. In “Differential Equations and Applications in Ecology, Epidemics, and Population Problems”, S. Busenberg and K. L. Cooke (Eds.), Academic Press, New York, 1981, pp. 163-182.

[26] J. M. Cushing, M. Saleem J. Math. Biol. 1982 231 250

[27] G. Dai, M. Tang SIAM J. Appl. Math. 1998 193 210

[28] L. S. Dai Math. Biosci. 1981 149 157

[29] R. Datko Quart. Appl. Math. 1978 279 292

[30] J. Dieudonné. Foundations of modern analysis. Academic Press, New York, 1960.

[31] B. Ermentrout. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM, Philadelphia, 2002.

[32] T. Faria J. Math. Anal. Appl. 2001 433 463

[33] T. Faria, L. T. Magalh J. Differential Equations 1995 201 224

[34] T. Faria, L. T. Magalh J. Differential Equations 1995 181 200

[35] A. Farkas, M. Farkas, G. Szabó J. Math. Biol. 1988 93 103

[36] H. I. Freedman. Deterministic Mathematical Models in Population Ecology. HIFR Consulting Ltd., Edmonton, 1987.

[37] H. I. Freedman, K. Gopalsamy Canad. Math. Bull. 1988 52 58

[38] H. I. Freedman, V. S. H. Rao Bull. Math. Biol. 1983 991 1004

[39] H. I. Freedman, V. S. H. Rao SIAM J. Appl. Anal. 1986 552 560

[40] H. I. Freedman, G. S. K. Wolkowicz Bull. Math. Biol. 1986 493 508

[41] N. S. Goel, S. C. Maitra, E. W. Montroll Rev. Modern Phys. 1971 231 276

[42] K. Gopalsamy Bull. Math. Biol. 1983 295 309

[43] K. Gopalsamy J. Austral. Math. Soc. Ser. B 1984 473 500

[44] K. Gopalsamy. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht, 1992.

[45] S. Gourley, Y. Kuang J. Math. Biol. 2004 188 200

[46] J. K. Hale, E. F. Infante, F.-S. P. Tsen J. Math. Anal. Appl. 1985 533 555

[47] J. K. Hale, S. M. Verduyn Lunel. Introduction to functional differential equations. Springer-Verlag, New York, 1993.

[48] B. D. Hassard, N. D. Kazarinoff, Y.-H. Wan. Theory and applications of Hopf bifurcation. Cambridge University Press, London, 1981.

[49] A. Hastings. Age-dependent predation is not a simple process: I. continuous time models. Theoret. Pop. Biol., 23 (1983), 347-362.

[50] A. Hastings J. Math. Biol. 1984 35 44

[51] X.-Z. He J. Math. Anal. Appl. 1996 355 370

[52] X.-Z. He SIAM J. Appl. Math. 1998 1222 1236

[53] W. L. Hogarth, J. Norbury, I. Cunning, K. Sommers Ecol. Modelling 1992 83 106

[54] W. Huang. Algebraic criteria on the stability of the zero solutions of the second order delay differential equations. J. Anhui University, (1985), 1–7.

[55] J. A. Hutchings, R. A. Myers Can. J. Fish. Aquat. Sci. 1994 2126 2146

[56] Y. Kuang. Delay differential equations with applications in population dynamics. Academic Press, New York, 1993.

[57] Y. A. Kuznetsov. Elements of applied bifurcation theory. Applied Mathematical Sciences 112, Springer-Verlag, New York, 1995.

[58] S. Liu, L. Chen, R. Agarwal. Recent progress on stage-structured population dynamics. Math. Computer Model.,36 (2002), 1319-1360.

[59] Z. Liu, R. Yuan J. Math. Anal. Appl. 2004 521 537

[60] Z. Lu, W. Wang J. Math. Anal. Appl. 1997 277 280

[61] Z. Ma Applicable Anal. 1986 169 192

[62] J. M. Mahaffy Quart. Appl. Math. 1982 193 202

[63] A. Martin, S. Ruan J. Mathematical Biology 2001 247 267

[64] R. M. May Ecology 1973 315 325

[65] N. MacDonald. Time lags in biological models. Springer-Verlag, Heidelberg, 1978.

[66] R. A. Myers, J. A. Hutchings, N. J. Barrowman Ecol. Appl. 1997 91 106

[67] R. A. Myers, B. Worm Nature 2003 280 283

[68] M. R. Myerscough, B. F. Gray, W. L. Hogarth, J. Norbury J. Math. Biol. 1992 389 411

[69] S. Nakaoka, Y. Saito, Y. Takeuchi Math. Biosci. Engineer. 2006 173 187

[70] L. Nunney Theoret. Pop. Biol. 1985 202 221

[71] L. Nunney Theoret. Pop. Biol. 1985 209 232

[72] Y. Qu, J. Wei Nonlinear Dynamics 2007 285 294

[73] G. G. Ross J. Theoret. Biol. 1972 477 492

[74] S. Ruan Quart. Appl. Math. 2001 159 173

[75] S. Ruan. Delay differential equations in single species dynamics. In “Delay Differential Equations with Applications,” O. Arino, M. Hbid and E. Ait Dads (Eds.), NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 205, Springer, Berlin, 2006, pp. 477-517.

[76] S. Ruan, J. Wei Dynam. Contin. Discr. Impuls. Syst. 2003 863 874

[77] S. Ruan, D. Xiao. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J, Appl. Math., 61 (2001), 1445-1472.

[78] W. Sokol, J. A. Howell Biotechnol. Bioeng. 1980 2039 2049

[79] Y. Song, Y. Peng, J. Wei J. Math. Anal. Appl. 2008 466 479

[80] Y. Song, J. Wei J. Math. Anal. Appl. 2005 1 21

[81] G. Stépán Nonlinear Anal. 1986 913 929

[82] P. Táboas Proc. Roy. Soc. Edinburgh 1990 85 101

[83] V. Volterra Mem. Acad. Lincei. 1926 31 113

[84] V. Volterra. Lecons sur la théorie mathematique de la lutte pour la vie. Gauthier-Villars, Paris, 1931.

[85] W. Wang, L. Chen Computers Math. Appl. 1997 83 91

[86] P. J. Wangersky, W. J. Cunningham Ecology 1957 136 139

[87] G. S. K. Wolkowicz SIAM J. Appl. Math. 1988 592 606

[88] J. Wu Trans. Amer. Math. Soc. 1998 4799 4838

[89] J. Xia, Z. Liu, R. Yuan, S. Ruan. The effects of harvesting and time delay on predator-prey systems with Holling type II functional response. SIAM J. Appl. Math. (revised).

[90] D. Xiao, W. Li Proc. Edinburgh Math. Soc. 2003 205 220

[91] D. Xiao, S. Ruan Fields Institute Communications 1999 493 506

[92] D. Xiao, S. Ruan J. Differential Equations 2001 494 510

[93] X.-P. Yan, W.-T. Li Appl. Math. Computat. 2006 427 445

[94] T. Zhao, Y. Kuang, H. L. Smith Nonlinear Anal. 1997 1373 1394

Cité par Sources :