Singular Perturbations For Heart Image Segmentation Tracking
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 183-194.

Voir la notice de l'article provenant de la source EDP Sciences

In this note we give a result of convergence when time goes to infinity for a quasi static linear elastic model, the elastic tensor of which vanishes at infinity. This method is applied to segmentation of medical images, and improves the 'elastic deformable template' model introduced previously.
DOI : 10.1051/mmnp/20094109

J. Pousin 1

1 Université de Lyon, Université Lyon 1 ; INSA de Lyon, F-69100 ; École Centrale de Lyon ; CNRS, UMR5208, Institut Camille Jordan, 20 Av. E. Einstein F-69100 Villeurbanne Cedex, France
@article{MMNP_2009_4_1_a8,
     author = {J. Pousin},
     title = {Singular {Perturbations} {For} {Heart} {Image} {Segmentation} {Tracking}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {183--194},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094109/}
}
TY  - JOUR
AU  - J. Pousin
TI  - Singular Perturbations For Heart Image Segmentation Tracking
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 183
EP  - 194
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094109/
DO  - 10.1051/mmnp/20094109
LA  - en
ID  - MMNP_2009_4_1_a8
ER  - 
%0 Journal Article
%A J. Pousin
%T Singular Perturbations For Heart Image Segmentation Tracking
%J Mathematical modelling of natural phenomena
%D 2009
%P 183-194
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094109/
%R 10.1051/mmnp/20094109
%G en
%F MMNP_2009_4_1_a8
J. Pousin. Singular Perturbations For Heart Image Segmentation Tracking. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 183-194. doi : 10.1051/mmnp/20094109. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094109/

[1] H. Brézis. Analyse fonctionnelle. Masson, Paris 1985.

[2] C, Xu, J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7 1998, 359-369.

[3] P.G. Ciarlet. Mathematical elasticity. North-Holland 1993.

[4] J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, J. Garot. Automated, accurate and fast segmentation of 4D cardiac MR images. Functional Imaging and Modeling of the Heart (FIMH), LNCS, Springer, (2007), No. 4466, 474-483.

[5] B. Faugeras, J. Pousin Analysis and Applications 2004 1 33

[6] F. Krasucki, S. Lenci Eur. J. Mech. A Solids 2000 649 667

[7] J. Necas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.

[8] O.A. Oleinik, A.S. Shamaev, G.A. Yosifian. Mathematical problems in elasticity and homogenization. Studies in Mathematics and its applications, Noth-Holland 1992.

[9] Q.C. Pham, F. Vincent, P. Clarysse, P. Croisille, I.E. Magnin. A FEM-based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI., Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis, ISPA (2001), 250-254.

[10] M. Picq J. Pousin, Y. Rouchdy, A linear 3D elastic segmentation model for vector fields. Application to the heart segmentation in MRI. Journal Of Mathematical Imaging and Vision, 27 (2007), No. 3, 241–255.

[11] P. Pebay, T. Baker, J. Pousin. Dynamic meshing for finite element based segmentation of cardiac imagery. Fifth World Congress on Computational Mechanics, (2002).

[12] Y. Rouchdy, J. Pousin, J. Schaerer, P. Clarysse J. Inverse Problems 2007 1017 1035

[13] L. Tartar. Topics in nonlinear analysis. Publications Mathématiques d'Orsay, 1978.

[14]

Cité par Sources :