Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2009_4_1_a6, author = {M. Bostan and P. Hild}, title = {Weak {Formulations} and {Solution} {Multiplicity} of {Equilibrium} {Configurations} with {Coulomb} {Friction}}, journal = {Mathematical modelling of natural phenomena}, pages = {147--162}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2009}, doi = {10.1051/mmnp/20094107}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/} }
TY - JOUR AU - M. Bostan AU - P. Hild TI - Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction JO - Mathematical modelling of natural phenomena PY - 2009 SP - 147 EP - 162 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/ DO - 10.1051/mmnp/20094107 LA - en ID - MMNP_2009_4_1_a6 ER -
%0 Journal Article %A M. Bostan %A P. Hild %T Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction %J Mathematical modelling of natural phenomena %D 2009 %P 147-162 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/ %R 10.1051/mmnp/20094107 %G en %F MMNP_2009_4_1_a6
M. Bostan; P. Hild. Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 147-162. doi : 10.1051/mmnp/20094107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/
[1] Appl. Math. Optim. 2000 169 202
[2] J.R. Barber, P. Hild. Non-uniqueness, eigenvalue solutions and wedged configurations involving Coulomb friction, Proceedings of the IJTC 2004, ASME/STLE International Joint Tribology Conference, Long Beach California, USA, 24-27 October 2004, Part A, 127–132.
[3] Math. Models Meth. Appl. Sci. 1998 445 468
,[4] C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics 270, CRC Press, 2005.
[5] W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002.
[6] J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, eds. P.G. Ciarlet and J. L. Lions, North Holland, 1996, pp. 313–485.
[7] Int. J. Solids Structures 2007 6187 6200
, ,[8] Comput. Methods Appl. Mech. Engrg. 2007 2377 2389
, ,[9] Q. Jl. Mech. Appl. Math. 2004 225 235
[10] Z. Angew. Math. Mech. 2005 673 680
[11] Int. J. Engng. Sci. 1988 811 832
, ,[12] Nonlinear Anal. 1989 935 955
, ,[13] Nonlinear Anal. 1987 407 428
,[14] J.A.C. Martins, M.D.P. Monteiro Marques (Eds.) Contact Mechanics, Proceedings of the third Contact Mechanics International Symposium, Solid Mechanics and its Applications 103, Kluwer, 2002.
[15] C. R. Acad. Sci. Sér. I Math. 1996 307 312
,[16] J. Nečas, J. Jarušek, J. Haslinger. On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U.M.I., 17 (1980), No. 5, 796–811.
[17] Comput. Methods. Appl. Mech. Engrg. 1985 527 634
,[18] SIAM J. Math. Anal. 2006 458 467
[19] Int. J. Engrg. Sci. 2001 1233 1255
,[20] M. Shillor (Ed.) Recent advances in contact mechanics, Mathl. Comput. Modelling, 28 (1998), No. 4–8, 1–534.
[21] P. Wriggers, U. Nackenhorst (Eds.) Analysis and simulation of contact problems, Proceedings of the fourth Contact Mechanics International Symposium, Lecture Notes in Applied and Computational Mechanics 27, Springer, 2006.
Cité par Sources :