Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 147-162.

Voir la notice de l'article provenant de la source EDP Sciences

This work is concerned with the equilibrium configurations of elastic structures in contact with Coulomb friction. We obtain a variational formulation of this equilibrium problem. Then we propose sufficient conditions for the existence of an infinity of equilibrium configurations with arbitrary small friction coefficients. We illustrate the result in two space dimensions with a simple example.
DOI : 10.1051/mmnp/20094107

M. Bostan 1 ; P. Hild 1

1 Laboratoire de Mathématiques, Université de Franche-Comté CNRS UMR 6623, 16 route de Gray, 25030 Besançon, France
@article{MMNP_2009_4_1_a6,
     author = {M. Bostan and P. Hild},
     title = {Weak {Formulations} and {Solution} {Multiplicity} of {Equilibrium} {Configurations} with {Coulomb} {Friction}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {147--162},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/}
}
TY  - JOUR
AU  - M. Bostan
AU  - P. Hild
TI  - Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 147
EP  - 162
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/
DO  - 10.1051/mmnp/20094107
LA  - en
ID  - MMNP_2009_4_1_a6
ER  - 
%0 Journal Article
%A M. Bostan
%A P. Hild
%T Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction
%J Mathematical modelling of natural phenomena
%D 2009
%P 147-162
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/
%R 10.1051/mmnp/20094107
%G en
%F MMNP_2009_4_1_a6
M. Bostan; P. Hild. Weak Formulations and Solution Multiplicity of Equilibrium Configurations with Coulomb Friction. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 147-162. doi : 10.1051/mmnp/20094107. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094107/

[1] L.-E. Andersson Appl. Math. Optim. 2000 169 202

[2] J.R. Barber, P. Hild. Non-uniqueness, eigenvalue solutions and wedged configurations involving Coulomb friction, Proceedings of the IJTC 2004, ASME/STLE International Joint Tribology Conference, Long Beach California, USA, 24-27 October 2004, Part A, 127–132.

[3] C. Eck, J. Jarušek Math. Models Meth. Appl. Sci. 1998 445 468

[4] C. Eck, J. Jarušek, M. Krbec. Unilateral contact problems: variational methods and existence theorems, Pure and Applied Mathematics 270, CRC Press, 2005.

[5] W. Han, M. Sofonea. Quasistatic contact problems in viscoelasticity and viscoplasticity, American Mathematical Society, International Press, 2002.

[6] J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, eds. P.G. Ciarlet and J. L. Lions, North Holland, 1996, pp. 313–485.

[7] R. Hassani, I. Ionescu, E. Oudet Int. J. Solids Structures 2007 6187 6200

[8] R. Hassani, I. Ionescu, N.-D. Sakki Comput. Methods Appl. Mech. Engrg. 2007 2377 2389

[9] P. Hild Q. Jl. Mech. Appl. Math. 2004 225 235

[10] P. Hild Z. Angew. Math. Mech. 2005 673 680

[11] A. Klarbring, A. Mikelíc, M. Shillor Int. J. Engng. Sci. 1988 811 832

[12] A. Klarbring, A. Mikelíc, M. Shillor Nonlinear Anal. 1989 935 955

[13] J.A.C. Martins, J.T. Oden Nonlinear Anal. 1987 407 428

[14] J.A.C. Martins, M.D.P. Monteiro Marques (Eds.) Contact Mechanics, Proceedings of the third Contact Mechanics International Symposium, Solid Mechanics and its Applications 103, Kluwer, 2002.

[15] C. Naéjus, A. Cimetière C. R. Acad. Sci. Sér. I Math. 1996 307 312

[16] J. Nečas, J. Jarušek, J. Haslinger. On the solution of the variational inequality to the Signorini problem with small friction, Bolletino U.M.I., 17 (1980), No. 5, 796–811.

[17] J.T. Oden, J.A.C. Martins Comput. Methods. Appl. Mech. Engrg. 1985 527 634

[18] Y. Renard SIAM J. Math. Anal. 2006 458 467

[19] R. Rocca, M. Cocu Int. J. Engrg. Sci. 2001 1233 1255

[20] M. Shillor (Ed.) Recent advances in contact mechanics, Mathl. Comput. Modelling, 28 (1998), No. 4–8, 1–534.

[21] P. Wriggers, U. Nackenhorst (Eds.) Analysis and simulation of contact problems, Proceedings of the fourth Contact Mechanics International Symposium, Lecture Notes in Applied and Computational Mechanics 27, Springer, 2006.

Cité par Sources :