A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 123-146.

Voir la notice de l'article provenant de la source EDP Sciences

The paper deals with an iterative method for numerical solving frictionless contact problems for two elastic bodies. Each iterative step consists of a Dirichlet problem for the one body, a contact problem for the other one and two Neumann problems to coordinate contact stresses. Convergence is proved by the Banach fixed point theorem in both continuous and discrete case. Numerical experiments indicate scalability of the algorithm for some choices of the relaxation parameter.
DOI : 10.1051/mmnp/20094106

J. Haslinger 1 ; R. Kučera 2 ; T. Sassi 3

1 Department of Numerical Mathematics, Charles University Prague, 186 75 Prague, CZ
2 Department of Mathematics and Descriptive Geometry, VŠB-TU Ostrava, 708 33 Ostrava, CZ
3 Department of Mathematics, University of Basse-Normandie, 14032 Caen, France
@article{MMNP_2009_4_1_a5,
     author = {J. Haslinger and R. Ku\v{c}era and T. Sassi},
     title = {A {Domain} {Decomposition} {Algorithm} for {Contact} {Problems:} {Analysis} and {Implementation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {123--146},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094106/}
}
TY  - JOUR
AU  - J. Haslinger
AU  - R. Kučera
AU  - T. Sassi
TI  - A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 123
EP  - 146
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094106/
DO  - 10.1051/mmnp/20094106
LA  - en
ID  - MMNP_2009_4_1_a5
ER  - 
%0 Journal Article
%A J. Haslinger
%A R. Kučera
%A T. Sassi
%T A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation
%J Mathematical modelling of natural phenomena
%D 2009
%P 123-146
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094106/
%R 10.1051/mmnp/20094106
%G en
%F MMNP_2009_4_1_a5
J. Haslinger; R. Kučera; T. Sassi. A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 123-146. doi : 10.1051/mmnp/20094106. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094106/

[1] L. Baillet, T. Sassi. Simulations numériques de différentes méthodes d'éments finis pour les problémes contact avec frottement. C. R. Acad. Sci, Paris, Ser. IIB, 331 (2003),789–796.

[2] G. Bayada, J. Sabil, T. Sassi. Algorithme de décomposition de domaine pour un probléme de Signorini sans frottement. C. R. Acad. Sci. Paris, Ser. I335 (2002), 381–386.

[3] G. Bayada, J. Sabil, T. Sassi Appl. Math. Letters 2004 1153 1159

[4] P. E. Bjorstad, O. B. Widlund SIAM J. Numerical Analysis 1986 1097 1120

[5] P. W. Christensen, A. Klarbring, J. S. Pang, N. Strömberg Internat. J. Numer. Methods Engrg. 1998 145 173

[6] Z. Dostál, J. Schöberl Comput. Optim. Appl. 2005 23 44

[7] C. Eck, B. Wohlmuth Mathematical Models and Methods in Applied Sciences 2003 1103 1118

[8] R. Glowinski, J. L. Lions, R. Trémoliére. Numerical analysis of variational inequalities. Studies in Mathematics and its Applications, Volume VIII, North-Holland, Amsterdam, 1981.

[9] G. H. Golub, C. F. Van Loan. Matrix computation. The Johns Hopkins University Press, Baltimore, 1996.

[10] J. Haslinger, Z. Dostál, R. Kučera Comput. Methods Appl. Mech. Engrg. 2002 2261 2281

[11] J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Volume IV, Part 2, North Holland, Amsterdam, 1996.

[12] M. A. Ipopa. Algorithmes de Décomposition de Domaine pour les problémes de Contact: Convergence et simulations numériques. Thesis, Université de Caen, 2008.

[13] N. Kikuchi, J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.

[14] R. Kornhuber, R. Krause Comput. Vis. Sci. 2001 9 20

[15] R. Krause, B. Wohlmuth Comput. Vis. Sci. 2002 139 148

[16] P. Le Tallec Comput. Mech. Adv. 1994 121 220

[17] J. Sabil. Modélisation et méthodes de décomposition de domaine pour des problémes de contact. Thesis, INSA de Lyon, 2004.

Cité par Sources :