Voir la notice de l'article provenant de la source EDP Sciences
S. Cochez-Dhondt 1 ; S. Nicaise 1 ; S. Repin 2
@article{MMNP_2009_4_1_a4, author = {S. Cochez-Dhondt and S. Nicaise and S. Repin}, title = {A {Posteriori} {Error} {Estimates} for {Finite} {Volume} {Approximations}}, journal = {Mathematical modelling of natural phenomena}, pages = {106--122}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2009}, doi = {10.1051/mmnp/20094105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094105/} }
TY - JOUR AU - S. Cochez-Dhondt AU - S. Nicaise AU - S. Repin TI - A Posteriori Error Estimates for Finite Volume Approximations JO - Mathematical modelling of natural phenomena PY - 2009 SP - 106 EP - 122 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094105/ DO - 10.1051/mmnp/20094105 LA - en ID - MMNP_2009_4_1_a4 ER -
%0 Journal Article %A S. Cochez-Dhondt %A S. Nicaise %A S. Repin %T A Posteriori Error Estimates for Finite Volume Approximations %J Mathematical modelling of natural phenomena %D 2009 %P 106-122 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094105/ %R 10.1051/mmnp/20094105 %G en %F MMNP_2009_4_1_a4
S. Cochez-Dhondt; S. Nicaise; S. Repin. A Posteriori Error Estimates for Finite Volume Approximations. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 106-122. doi : 10.1051/mmnp/20094105. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094105/
[1] A. Agouzal, F. Oudin. A posteriori error estimator for finite volume methods. C. R. Acad. Sci. Paris, Sér. 1, 343 (2006), 349–354.
[2] S. Repin, S. Sauter, A. Smolianski. Two-Sided a posteriori error estimates for mixed formulations of elliptic problems. Preprint 21-2005, Institute of Mathematics, University of Zurich (to appear in SIAM J. Numer. Anal.).
[3] R. Verfürth. A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley, Teubner, New York, 1996.
[4] ESAIM: Proc. 2007 57 69
Cité par Sources :