Voir la notice de l'article provenant de la source Numdam
A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This paper demonstrates that these methods differ only in their choice of discrete inner product. Finally, certain uniqueness results for the covolume inner product are shown.
@article{M2AN_2008__42_6_941_0, author = {Trapp, Kathryn A.}, title = {Inner products in covolume and mimetic methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {941--959}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008030}, mrnumber = {2473315}, zbl = {1155.65103}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008030/} }
TY - JOUR AU - Trapp, Kathryn A. TI - Inner products in covolume and mimetic methods JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 941 EP - 959 VL - 42 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008030/ DO - 10.1051/m2an:2008030 LA - en ID - M2AN_2008__42_6_941_0 ER -
%0 Journal Article %A Trapp, Kathryn A. %T Inner products in covolume and mimetic methods %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 941-959 %V 42 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008030/ %R 10.1051/m2an:2008030 %G en %F M2AN_2008__42_6_941_0
Trapp, Kathryn A. Inner products in covolume and mimetic methods. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 6, pp. 941-959. doi : 10.1051/m2an:2008030. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008030/
[1] Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Vol. I, Higher Ed. Press, Beijing (2002) 137-157. | Zbl | MR
,[2] Convergence of mimetic finite difference discretizations of the diffusion equation. East-West J. Numer. Math 9 (2001) 253-316. | Zbl | MR
, , and ,[3] Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer, New York (2006). | Zbl | MR
and ,[4] Generating whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38 (2002) 341-344.
,[5] Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. | Zbl | MR
,[6] Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology, USA (2003).
,[7] The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. Num. Math. 25 (1997) 1-30. | Zbl | MR
and ,[8] Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33 (1997) 81-104. | Zbl | MR
and ,[9] Mimetic discretizations for Maxwell's equations. J. Comp. Phys. 151 (1999) 881-909. | Zbl | MR
and ,[10] The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36 (1999) 788-818. | Zbl | MR
and ,[11] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl | MR | EuDML
,[12] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl | MR | EuDML
,[13] Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29 (1992) 32-56. | Zbl | MR
,[14] Covolume discretizations of differential forms, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer, New York (2006). | Zbl | MR
and ,[15] Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions. Math. Comp. 67 (1998) 947-963. | Zbl | MR
and ,[16] Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Anal. 34 (1997) 2195-2203. | Zbl | MR
and ,[17] A mixed finite elemnt method for second order elliptic problems, in Springer Lecture Notes in Mathematics 606, Springer-Verlag (1977) 292-315. | Zbl | MR
and ,[18] A Class of Compatible Discretizations with Applications to Div-Curl Systems. Ph.D. thesis, Carnegie Mellon University, USA (2004).
,Cité par Sources :