Sparse finite element approximation of high-dimensional transport-dominated diffusion problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 5, pp. 777-819

Voir la notice de l'article provenant de la source Numdam

We develop the analysis of stabilized sparse tensor-product finite element methods for high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations of the form -a:u+b·u+cu=f(x), xΩ=(0,1) d d , where a d×d is a symmetric positive semidefinite matrix, using piecewise polynomials of degree p1. Our convergence analysis is based on new high-dimensional approximation results in sparse tensor-product spaces. We show that the error between the analytical solution u and its stabilized sparse finite element approximation u h on a partition of Ω of mesh size h=h L =2 -L satisfies the following bound in the streamline-diffusion norm |||·||| SD , provided u belongs to the space k+1 (Ω) of functions with square-integrable mixed (k+1)st derivatives:

|||u-u h ||| SD C p,t d 2 max{(2-p) + ,κ 0 d-1 ,κ 1 d }(|a|h L t +|b| 1 2 h L t+1 2 +c 1 2 h L t+1 )|u| t+1 (Ω) ,
where κ i =κ i (p,t,L), i=0,1, and 1tmin(k,p). We show, under various mild conditions relating L to p, L to d, or p to d, that in the case of elliptic transport-dominated diffusion problems κ 0 ,κ 1 (0,1), and hence for p2 the ‘error constant’ C p,t d 2 max{(2-p) + ,κ 0 d-1 ,κ 1 d } exhibits exponential decay as d; in the case of a general symmetric positive semidefinite matrix a, the error constant is shown to grow no faster than 𝒪(d 2 ). In any case, in the absence of assumptions that relate L, p and d, the error |||u-u h ||| SD is still bounded by κ * d-1 |log 2 h L | d-1 𝒪(|a|h L t +|b| 1 2 h L t+1 2 +c 1 2 h L t+1 ), where κ * (0,1) for all L,p,d2.

DOI : 10.1051/m2an:2008027
Classification : 65N30
Keywords: high-dimensional Fokker-Planck equations, partial differential equations with nonnegative characteristic form, sparse finite element method
@article{M2AN_2008__42_5_777_0,
     author = {Schwab, Christoph and S\"uli, Endre and Todor, Radu Alexandru},
     title = {Sparse finite element approximation of high-dimensional transport-dominated diffusion problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {777--819},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {5},
     year = {2008},
     doi = {10.1051/m2an:2008027},
     mrnumber = {2454623},
     zbl = {1159.65094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008027/}
}
TY  - JOUR
AU  - Schwab, Christoph
AU  - Süli, Endre
AU  - Todor, Radu Alexandru
TI  - Sparse finite element approximation of high-dimensional transport-dominated diffusion problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2008
SP  - 777
EP  - 819
VL  - 42
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008027/
DO  - 10.1051/m2an:2008027
LA  - en
ID  - M2AN_2008__42_5_777_0
ER  - 
%0 Journal Article
%A Schwab, Christoph
%A Süli, Endre
%A Todor, Radu Alexandru
%T Sparse finite element approximation of high-dimensional transport-dominated diffusion problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2008
%P 777-819
%V 42
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008027/
%R 10.1051/m2an:2008027
%G en
%F M2AN_2008__42_5_777_0
Schwab, Christoph; Süli, Endre; Todor, Radu Alexandru. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 5, pp. 777-819. doi: 10.1051/m2an:2008027

Cité par Sources :