The hp-version of the boundary element method with quasi-uniform meshes in three dimensions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 5, pp. 821-849

Voir la notice de l'article provenant de la source Numdam

We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is H 1 -regular whereas, on open surfaces, edge singularities are strong enough to prevent the solution from being in H 1 . In this paper we cover both cases and, in particular, prove an a priori error estimate for the h-version with quasi-uniform meshes. For open surfaces we prove a convergence like O(h 1/2 p -1 ), h being the mesh size and p denoting the polynomial degree. This result had been conjectured previously.

DOI : 10.1051/m2an:2008025
Classification : 41A10, 65N15, 65N38
Keywords: $hp$-version with quasi-uniform meshes, boundary element method, singularities
@article{M2AN_2008__42_5_821_0,
     author = {Bespalov, Alexei and Heuer, Norbert},
     title = {The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {821--849},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {5},
     year = {2008},
     doi = {10.1051/m2an:2008025},
     mrnumber = {2454624},
     zbl = {1154.41300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/}
}
TY  - JOUR
AU  - Bespalov, Alexei
AU  - Heuer, Norbert
TI  - The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2008
SP  - 821
EP  - 849
VL  - 42
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/
DO  - 10.1051/m2an:2008025
LA  - en
ID  - M2AN_2008__42_5_821_0
ER  - 
%0 Journal Article
%A Bespalov, Alexei
%A Heuer, Norbert
%T The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2008
%P 821-849
%V 42
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/
%R 10.1051/m2an:2008025
%G en
%F M2AN_2008__42_5_821_0
Bespalov, Alexei; Heuer, Norbert. The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 5, pp. 821-849. doi: 10.1051/m2an:2008025

Cité par Sources :