Voir la notice de l'article provenant de la source Numdam
We prove an a priori error estimate for the -version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is -regular whereas, on open surfaces, edge singularities are strong enough to prevent the solution from being in . In this paper we cover both cases and, in particular, prove an a priori error estimate for the -version with quasi-uniform meshes. For open surfaces we prove a convergence like , being the mesh size and denoting the polynomial degree. This result had been conjectured previously.
@article{M2AN_2008__42_5_821_0, author = {Bespalov, Alexei and Heuer, Norbert}, title = {The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {821--849}, publisher = {EDP-Sciences}, volume = {42}, number = {5}, year = {2008}, doi = {10.1051/m2an:2008025}, mrnumber = {2454624}, zbl = {1154.41300}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/} }
TY - JOUR AU - Bespalov, Alexei AU - Heuer, Norbert TI - The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 821 EP - 849 VL - 42 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/ DO - 10.1051/m2an:2008025 LA - en ID - M2AN_2008__42_5_821_0 ER -
%0 Journal Article %A Bespalov, Alexei %A Heuer, Norbert %T The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 821-849 %V 42 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/ %R 10.1051/m2an:2008025 %G en %F M2AN_2008__42_5_821_0
Bespalov, Alexei; Heuer, Norbert. The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 5, pp. 821-849. doi : 10.1051/m2an:2008025. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008025/
[1] Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. (to appear).
and ,[2] The approximation theory for the -version finite element method and application to non-linear elliptic PDEs. Numer. Math. 82 (1999) 351-388. | Zbl | MR
and ,[3] The -MITC finite element method for the Reissner-Mindlin plate problem. J. Comput. Appl. Math. 148 (2002) 429-462. | Zbl | MR
and ,[4] The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901-1932. | Zbl | MR
, and ,[5] Optimal estimates for lower and upper bounds of approximation errors in the -version of the finite element method in two dimensions. Numer. Math. 85 (2000) 219-255. | Zbl | MR
and ,[6] The - version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. | Zbl | MR | mathdoc-id
and ,[7] The optimal convergence rate of the -version of the finite element method. SIAM J. Numer. Anal. 24 (1987) 750-776. | Zbl | MR
and ,[8] The treatment of nonhomogeneous Dirichlet boundary conditions by the -version of the finite element method. Numer. Math. 55 (1989) 97-121. | Zbl | MR
and ,[9] Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math. 33 (1979) 447-471. | Zbl | MR
, and ,[10] Interpolation Spaces, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin (1976). | Zbl | MR
and ,[11] The -version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer. Math. 100 (2005) 185-209. | Zbl | MR
and ,[12] The -version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math. 106 (2007) 69-97. | Zbl | MR
and ,[13] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl | MR
,[14] Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-626. | Zbl | MR
,[15] Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi and L. Gastaldi Eds., Lecture Notes in Mathematics 1939, Springer-Verlag (2008). | Zbl | MR
,[16] interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 1195-1208. | Zbl | MR
and ,[17] An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297-325. | Zbl | MR
and ,[18] Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Boston (1985). | Zbl | MR
,[19] Approximation theory for the -version of the finite element method in three dimensions. Part 1: Approximabilities of singular functions in the framework of the Jacobi-weighted Besov and Sobolev spaces. SIAM J. Numer. Anal. 44 (2006) 246-269. | Zbl | MR
,[20] The optimal rate of convergence of the -version of the boundary element method in two dimensions. Numer. Math. 98 (2004) 499-538. | Zbl | MR
and ,[21] The optimal convergence of the - version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comp. Math. 24 (2006) 353-374. | Zbl | MR
and ,[22] An extension theorem for polynomials on triangles. Calcolo 45 (2008) 69-85. | MR
and ,[23] Exponential convergence of the -version for the boundary element method on open surfaces. Numer. Math. 83 (1999) 641-666. | Zbl | MR
, and ,[24] Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972). | Zbl
and ,[25] On the - and -extension of Nédélec’s curl-conforming elements. J. Comput. Appl. Math. 53 (1994) 117-137. | Zbl | MR
,[26] Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). | MR
,[27] - and -Finite Element Methods. Clarendon Press, Oxford (1998). | Zbl | MR
,[28] The optimal -version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal. 33 (1996) 729-759. | Zbl | MR
and ,[29] Boundary integral equations for screen problems in . Integr. Equ. Oper. Theory 10 (1987) 257-263. | Zbl | MR
,[30] The - boundary element method for solving - and -dimensional problems. Comput. Methods Appl. Mech. Engrg. 133 (1996) 183-208. | Zbl | MR
,[31] The - version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25 (1991) 783-807. | Zbl | MR | mathdoc-id
and ,[32] Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt, Germany (1989). | Zbl
,[33] Regularity of mixed boundary value problems in and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12 (1990) 229-249. | Zbl | MR
and ,Cité par Sources :