A Fortin operator for two-dimensional Taylor-Hood elements
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 3, pp. 411-424

Voir la notice de l'article provenant de la source Numdam

A standard method for proving the inf-sup condition implying stability of finite element approximations for the stationary Stokes equations is to construct a Fortin operator. In this paper, we show how this can be done for two-dimensional triangular and rectangular Taylor-Hood methods, which use continuous piecewise polynomial approximations for both velocity and pressure.

DOI : 10.1051/m2an:2008008
Classification : 65N30
Keywords: finite element, Stokes
@article{M2AN_2008__42_3_411_0,
     author = {Falk, Richard S.},
     title = {A {Fortin} operator for two-dimensional {Taylor-Hood} elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {411--424},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {3},
     year = {2008},
     doi = {10.1051/m2an:2008008},
     mrnumber = {2423792},
     zbl = {1143.65085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008008/}
}
TY  - JOUR
AU  - Falk, Richard S.
TI  - A Fortin operator for two-dimensional Taylor-Hood elements
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2008
SP  - 411
EP  - 424
VL  - 42
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008008/
DO  - 10.1051/m2an:2008008
LA  - en
ID  - M2AN_2008__42_3_411_0
ER  - 
%0 Journal Article
%A Falk, Richard S.
%T A Fortin operator for two-dimensional Taylor-Hood elements
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2008
%P 411-424
%V 42
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008008/
%R 10.1051/m2an:2008008
%G en
%F M2AN_2008__42_3_411_0
Falk, Richard S. A Fortin operator for two-dimensional Taylor-Hood elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 3, pp. 411-424. doi: 10.1051/m2an:2008008

Cité par Sources :