Voir la notice de l'article provenant de la source Numdam
In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.
@article{M2AN_2008__42_1_93_0, author = {Carfora, Maria Francesca and Natalini, Roberto}, title = {A discrete kinetic approximation for the incompressible {Navier-Stokes} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {93--112}, publisher = {EDP-Sciences}, volume = {42}, number = {1}, year = {2008}, doi = {10.1051/m2an:2007055}, mrnumber = {2387423}, zbl = {1135.76037}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007055/} }
TY - JOUR AU - Carfora, Maria Francesca AU - Natalini, Roberto TI - A discrete kinetic approximation for the incompressible Navier-Stokes equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 93 EP - 112 VL - 42 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007055/ DO - 10.1051/m2an:2007055 LA - en ID - M2AN_2008__42_1_93_0 ER -
%0 Journal Article %A Carfora, Maria Francesca %A Natalini, Roberto %T A discrete kinetic approximation for the incompressible Navier-Stokes equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 93-112 %V 42 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007055/ %R 10.1051/m2an:2007055 %G en %F M2AN_2008__42_1_93_0
Carfora, Maria Francesca; Natalini, Roberto. A discrete kinetic approximation for the incompressible Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 1, pp. 93-112. doi: 10.1051/m2an:2007055
Cité par Sources :