Voir la notice de l'article provenant de la source Numdam
The discretisation of the Oseen problem by finite element methods may suffer in general from two shortcomings. First, the discrete inf-sup (Babuška-Brezzi) condition can be violated. Second, spurious oscillations occur due to the dominating convection. One way to overcome both difficulties is the use of local projection techniques. Studying the local projection method in an abstract setting, we show that the fulfilment of a local inf-sup condition between approximation and projection spaces allows to construct an interpolation with additional orthogonality properties. Based on this special interpolation, optimal a-priori error estimates are shown with error constants independent of the Reynolds number. Applying the general theory, we extend the results of Braack and Burman for the standard two-level version of the local projection stabilisation to discretisations of arbitrary order on simplices, quadrilaterals, and hexahedra. Moreover, our general theory allows to derive a novel class of local projection stabilisation by enrichment of the approximation spaces. This class of stabilised schemes uses approximation and projection spaces defined on the same mesh and leads to much more compact stencils than in the two-level approach. Finally, on simplices, the spectral equivalence of the stabilising terms of the local projection method and the subgrid modelling introduced by Guermond is shown. This clarifies the relation of the local projection stabilisation to the variational multiscale approach.
@article{M2AN_2007__41_4_713_0, author = {Matthies, Gunar and Skrzypacz, Piotr and Tobiska, Lutz}, title = {A unified convergence analysis for local projection stabilisations applied to the {Oseen} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {713--742}, publisher = {EDP-Sciences}, volume = {41}, number = {4}, year = {2007}, doi = {10.1051/m2an:2007038}, mrnumber = {2362912}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007038/} }
TY - JOUR AU - Matthies, Gunar AU - Skrzypacz, Piotr AU - Tobiska, Lutz TI - A unified convergence analysis for local projection stabilisations applied to the Oseen problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2007 SP - 713 EP - 742 VL - 41 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007038/ DO - 10.1051/m2an:2007038 LA - en ID - M2AN_2007__41_4_713_0 ER -
%0 Journal Article %A Matthies, Gunar %A Skrzypacz, Piotr %A Tobiska, Lutz %T A unified convergence analysis for local projection stabilisations applied to the Oseen problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2007 %P 713-742 %V 41 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007038/ %R 10.1051/m2an:2007038 %G en %F M2AN_2007__41_4_713_0
Matthies, Gunar; Skrzypacz, Piotr; Tobiska, Lutz. A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 4, pp. 713-742. doi: 10.1051/m2an:2007038
Cité par Sources :