A unified convergence analysis for local projection stabilisations applied to the Oseen problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 4, pp. 713-742

Voir la notice de l'article provenant de la source Numdam

The discretisation of the Oseen problem by finite element methods may suffer in general from two shortcomings. First, the discrete inf-sup (Babuška-Brezzi) condition can be violated. Second, spurious oscillations occur due to the dominating convection. One way to overcome both difficulties is the use of local projection techniques. Studying the local projection method in an abstract setting, we show that the fulfilment of a local inf-sup condition between approximation and projection spaces allows to construct an interpolation with additional orthogonality properties. Based on this special interpolation, optimal a-priori error estimates are shown with error constants independent of the Reynolds number. Applying the general theory, we extend the results of Braack and Burman for the standard two-level version of the local projection stabilisation to discretisations of arbitrary order on simplices, quadrilaterals, and hexahedra. Moreover, our general theory allows to derive a novel class of local projection stabilisation by enrichment of the approximation spaces. This class of stabilised schemes uses approximation and projection spaces defined on the same mesh and leads to much more compact stencils than in the two-level approach. Finally, on simplices, the spectral equivalence of the stabilising terms of the local projection method and the subgrid modelling introduced by Guermond is shown. This clarifies the relation of the local projection stabilisation to the variational multiscale approach.

DOI : 10.1051/m2an:2007038
Classification : 65N12, 65N30, 76D05
Keywords: stabilised finite elements, Navier-Stokes equations, equal-order interpolation
@article{M2AN_2007__41_4_713_0,
     author = {Matthies, Gunar and Skrzypacz, Piotr and Tobiska, Lutz},
     title = {A unified convergence analysis for local projection stabilisations applied to the {Oseen} problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {713--742},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {4},
     year = {2007},
     doi = {10.1051/m2an:2007038},
     mrnumber = {2362912},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007038/}
}
TY  - JOUR
AU  - Matthies, Gunar
AU  - Skrzypacz, Piotr
AU  - Tobiska, Lutz
TI  - A unified convergence analysis for local projection stabilisations applied to the Oseen problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2007
SP  - 713
EP  - 742
VL  - 41
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007038/
DO  - 10.1051/m2an:2007038
LA  - en
ID  - M2AN_2007__41_4_713_0
ER  - 
%0 Journal Article
%A Matthies, Gunar
%A Skrzypacz, Piotr
%A Tobiska, Lutz
%T A unified convergence analysis for local projection stabilisations applied to the Oseen problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2007
%P 713-742
%V 41
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007038/
%R 10.1051/m2an:2007038
%G en
%F M2AN_2007__41_4_713_0
Matthies, Gunar; Skrzypacz, Piotr; Tobiska, Lutz. A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 4, pp. 713-742. doi: 10.1051/m2an:2007038

Cité par Sources :