Voir la notice de l'article provenant de la source Numdam
We present families of scalar nonconforming finite elements of arbitrary order with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order form inf-sup stable finite element pairs of order for the Stokes problem. The well-known elements by Rannacher and Turek are recovered in the case . A numerical comparison between conforming and nonconforming discretisations will be given. Since higher order nonconforming discretisation on quadrilaterals and hexahedra have less unknowns and much less non-zero matrix entries compared to corresponding conforming methods, these methods are attractive for numerical simulations.
@article{M2AN_2007__41_5_855_0, author = {Matthies, Gunar}, title = {Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {855--874}, publisher = {EDP-Sciences}, volume = {41}, number = {5}, year = {2007}, doi = {10.1051/m2an:2007034}, mrnumber = {2363886}, zbl = {1147.65094}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007034/} }
TY - JOUR AU - Matthies, Gunar TI - Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2007 SP - 855 EP - 874 VL - 41 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007034/ DO - 10.1051/m2an:2007034 LA - en ID - M2AN_2007__41_5_855_0 ER -
%0 Journal Article %A Matthies, Gunar %T Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2007 %P 855-874 %V 41 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007034/ %R 10.1051/m2an:2007034 %G en %F M2AN_2007__41_5_855_0
Matthies, Gunar. Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 5, pp. 855-874. doi: 10.1051/m2an:2007034
Cité par Sources :