The time-dependent Born-Oppenheimer approximation
ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Molecular Modelling, Tome 41 (2007) no. 2, pp. 297-314

Voir la notice de l'article provenant de la source Numdam

We explain why the conventional argument for deriving the time-dependent Born-Oppenheimer approximation is incomplete and review recent mathematical results, which clarify the situation and at the same time provide a systematic scheme for higher order corrections. We also present a new elementary derivation of the correct second-order time-dependent Born-Oppenheimer approximation and discuss as applications the dynamics near a conical intersection of potential surfaces and reactive scattering.

DOI : 10.1051/m2an:2007023
Classification : 81Q05, 81Q15, 81Q70
Keywords: Schrödinger equation, Born-Oppenheimer approximation, adiabatic methods, almost-invariant subspace

Panati, Gianluca  ; Spohn, Herbert  ; Teufel, Stefan 1

1 Mathematisches Institut, Universität Tübingen, Germany. stefan.teufel@uni-tuebingen.de
@article{M2AN_2007__41_2_297_0,
     author = {Panati, Gianluca and Spohn, Herbert and Teufel, Stefan},
     title = {The time-dependent {Born-Oppenheimer} approximation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {297--314},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {2},
     year = {2007},
     doi = {10.1051/m2an:2007023},
     mrnumber = {2339630},
     zbl = {1135.81338},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007023/}
}
TY  - JOUR
AU  - Panati, Gianluca
AU  - Spohn, Herbert
AU  - Teufel, Stefan
TI  - The time-dependent Born-Oppenheimer approximation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2007
SP  - 297
EP  - 314
VL  - 41
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007023/
DO  - 10.1051/m2an:2007023
LA  - en
ID  - M2AN_2007__41_2_297_0
ER  - 
%0 Journal Article
%A Panati, Gianluca
%A Spohn, Herbert
%A Teufel, Stefan
%T The time-dependent Born-Oppenheimer approximation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2007
%P 297-314
%V 41
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007023/
%R 10.1051/m2an:2007023
%G en
%F M2AN_2007__41_2_297_0
Panati, Gianluca; Spohn, Herbert; Teufel, Stefan. The time-dependent Born-Oppenheimer approximation. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Molecular Modelling, Tome 41 (2007) no. 2, pp. 297-314. doi: 10.1051/m2an:2007023

Cité par Sources :