Voir la notice de l'article provenant de la source Numdam
We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore we introduce an additional constraint which gives antisymmetric sparse grids which are suited to fermionic systems. We apply the antisymmetric sparse grid discretization to the electronic Schrödinger equation and compare costs, accuracy, convergence rates and scalability with respect to the number of electrons present in the system.
@article{M2AN_2007__41_2_215_0, author = {Griebel, Michael and Hamaekers, Jan}, title = {Sparse grids for the {Schr\"odinger} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {215--247}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/m2an:2007015}, mrnumber = {2339626}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007015/} }
TY - JOUR AU - Griebel, Michael AU - Hamaekers, Jan TI - Sparse grids for the Schrödinger equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2007 SP - 215 EP - 247 VL - 41 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007015/ DO - 10.1051/m2an:2007015 LA - en ID - M2AN_2007__41_2_215_0 ER -
%0 Journal Article %A Griebel, Michael %A Hamaekers, Jan %T Sparse grids for the Schrödinger equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2007 %P 215-247 %V 41 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007015/ %R 10.1051/m2an:2007015 %G en %F M2AN_2007__41_2_215_0
Griebel, Michael; Hamaekers, Jan. Sparse grids for the Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Molecular Modelling, Tome 41 (2007) no. 2, pp. 215-247. doi: 10.1051/m2an:2007015
Cité par Sources :