Voir la notice de l'article provenant de la source Numdam
In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution of a second order elliptic equation posed in the perturbed domain with respect to the size parameter of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of based on a multiscale superposition of the unperturbed solution and a profile defined in a model domain. We conclude with numerical results.
@article{M2AN_2007__41_1_111_0, author = {Dambrine, Marc and Vial, Gr\'egory}, title = {A multiscale correction method for local singular perturbations of the boundary}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {111--127}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/m2an:2007012}, mrnumber = {2323693}, zbl = {1129.65084}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007012/} }
TY - JOUR AU - Dambrine, Marc AU - Vial, Grégory TI - A multiscale correction method for local singular perturbations of the boundary JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2007 SP - 111 EP - 127 VL - 41 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007012/ DO - 10.1051/m2an:2007012 LA - en ID - M2AN_2007__41_1_111_0 ER -
%0 Journal Article %A Dambrine, Marc %A Vial, Grégory %T A multiscale correction method for local singular perturbations of the boundary %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2007 %P 111-127 %V 41 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007012/ %R 10.1051/m2an:2007012 %G en %F M2AN_2007__41_1_111_0
Dambrine, Marc; Vial, Grégory. A multiscale correction method for local singular perturbations of the boundary. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 1, pp. 111-127. doi: 10.1051/m2an:2007012
Cité par Sources :