Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 6, pp. 991-1021

Voir la notice de l'article provenant de la source Numdam

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2θ1. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237; Verfürth, Calcolo 40 (2003) 195-212] it is easy to identify a time-discretization error-estimator and a space-discretization error-estimator. In this work we introduce a similar splitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math. 72 (1996) 313-348; Petzoldt, Adv. Comput. Math. 16 (2002) 47-75] we have upper and lower bounds whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.

DOI : 10.1051/m2an:2006034
Classification : 65M60, 65M15, 65M50
Keywords: a posteriori error estimates, parabolic problems, discontinuous coefficients
@article{M2AN_2006__40_6_991_0,
     author = {Berrone, Stefano},
     title = {Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {991--1021},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {6},
     year = {2006},
     doi = {10.1051/m2an:2006034},
     mrnumber = {2297102},
     zbl = {1121.65098},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006034/}
}
TY  - JOUR
AU  - Berrone, Stefano
TI  - Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2006
SP  - 991
EP  - 1021
VL  - 40
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006034/
DO  - 10.1051/m2an:2006034
LA  - en
ID  - M2AN_2006__40_6_991_0
ER  - 
%0 Journal Article
%A Berrone, Stefano
%T Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2006
%P 991-1021
%V 40
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006034/
%R 10.1051/m2an:2006034
%G en
%F M2AN_2006__40_6_991_0
Berrone, Stefano. Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 6, pp. 991-1021. doi: 10.1051/m2an:2006034

Cité par Sources :