Voir la notice de l'article provenant de la source Numdam
In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.
Creusé, Emmanuel  ; Nicaise, Serge 1
@article{M2AN_2006__40_2_413_0, author = {Creus\'e, Emmanuel and Nicaise, Serge}, title = {Discrete compactness for a discontinuous {Galerkin} approximation of {Maxwell's} system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {413--430}, publisher = {EDP-Sciences}, volume = {40}, number = {2}, year = {2006}, doi = {10.1051/m2an:2006017}, zbl = {1112.78020}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006017/} }
TY - JOUR AU - Creusé, Emmanuel AU - Nicaise, Serge TI - Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2006 SP - 413 EP - 430 VL - 40 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006017/ DO - 10.1051/m2an:2006017 LA - en ID - M2AN_2006__40_2_413_0 ER -
%0 Journal Article %A Creusé, Emmanuel %A Nicaise, Serge %T Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2006 %P 413-430 %V 40 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006017/ %R 10.1051/m2an:2006017 %G en %F M2AN_2006__40_2_413_0
Creusé, Emmanuel; Nicaise, Serge. Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 2, pp. 413-430. doi: 10.1051/m2an:2006017
Cité par Sources :