Voir la notice de l'article provenant de la source Numdam
In this paper, we present extensive numerical tests showing the performance and robustness of a Balancing Neumann-Neumann method for the solution of algebraic linear systems arising from finite element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. The numerical results are in good agreement with the theoretical bound for the condition number of the preconditioned operator derived in [Toselli and Vasseur, IMA J. Numer. Anal. 24 (2004) 123-156]. They confirm that the condition numbers are independent of the aspect ratio of the mesh and of potentially large jumps of the coefficients. Good results are also obtained for certain singularly perturbed problems. The condition numbers only grow polylogarithmically with the polynomial degree, as in the case of approximations on shape-regular meshes [Pavarino, RAIRO: Modél. Math. Anal. Numér. 31 (1997) 471-493]. This paper follows [Toselli and Vasseur, Comput. Methods Appl. Mech. Engrg. 192 (2003) 4551-4579] on two dimensional problems.
@article{M2AN_2006__40_1_99_0, author = {Toselli, Andrea and Vasseur, Xavier}, title = {A numerical study on {Neumann-Neumann} methods for $hp$ approximations on geometrically refined boundary layer meshes {II.} {Three-dimensional} problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {99--122}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/m2an:2006004}, mrnumber = {2223506}, zbl = {1094.65121}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006004/} }
TY - JOUR AU - Toselli, Andrea AU - Vasseur, Xavier TI - A numerical study on Neumann-Neumann methods for $hp$ approximations on geometrically refined boundary layer meshes II. Three-dimensional problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2006 SP - 99 EP - 122 VL - 40 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006004/ DO - 10.1051/m2an:2006004 LA - en ID - M2AN_2006__40_1_99_0 ER -
%0 Journal Article %A Toselli, Andrea %A Vasseur, Xavier %T A numerical study on Neumann-Neumann methods for $hp$ approximations on geometrically refined boundary layer meshes II. Three-dimensional problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2006 %P 99-122 %V 40 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006004/ %R 10.1051/m2an:2006004 %G en %F M2AN_2006__40_1_99_0
Toselli, Andrea; Vasseur, Xavier. A numerical study on Neumann-Neumann methods for $hp$ approximations on geometrically refined boundary layer meshes II. Three-dimensional problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 1, pp. 99-122. doi: 10.1051/m2an:2006004
Cité par Sources :