Voir la notice de l'article provenant de la source Numdam
In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems which are based on -conforming approximations for the vector variable and discontinuous approximations for the scalar variable. The discretization is fulfilled by combining the ideas of the traditional finite volume box method and the local discontinuous Galerkin method. We propose two different types of methods, called Methods I and II, and show that they have distinct advantages over the mixed methods used previously. In particular, a clever elimination of the vector variable leads to a primal formulation for the scalar variable which closely resembles discontinuous finite element methods. We establish error estimates for these methods that are optimal for the scalar variable in both methods and for the vector variable in Method II.
@article{M2AN_2006__40_1_123_0, author = {Kim, Kwang Y.}, title = {New mixed finite volume methods for second order eliptic problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {123--147}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/m2an:2006001}, mrnumber = {2223507}, zbl = {1097.65116}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006001/} }
TY - JOUR AU - Kim, Kwang Y. TI - New mixed finite volume methods for second order eliptic problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2006 SP - 123 EP - 147 VL - 40 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006001/ DO - 10.1051/m2an:2006001 LA - en ID - M2AN_2006__40_1_123_0 ER -
%0 Journal Article %A Kim, Kwang Y. %T New mixed finite volume methods for second order eliptic problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2006 %P 123-147 %V 40 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006001/ %R 10.1051/m2an:2006001 %G en %F M2AN_2006__40_1_123_0
Kim, Kwang Y. New mixed finite volume methods for second order eliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 1, pp. 123-147. doi: 10.1051/m2an:2006001
Cité par Sources :