Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 6, pp. 1149-1176

Voir la notice de l'article provenant de la source Numdam

A Discontinuous Galerkin method is used for to the numerical solution of the time-domain Maxwell equations on unstructured meshes. The method relies on the choice of local basis functions, a centered mean approximation for the surface integrals and a second-order leap-frog scheme for advancing in time. The method is proved to be stable for cases with either metallic or absorbing boundary conditions, for a large class of basis functions. A discrete analog of the electromagnetic energy is conserved for metallic cavities. Convergence is proved for k Discontinuous elements on tetrahedral meshes, as well as a discrete divergence preservation property. Promising numerical examples with low-order elements show the potential of the method.

DOI : 10.1051/m2an:2005049
Classification : 65M12, 65M60, 78-08, 78A40
Keywords: electromagnetics, finite volume methods, discontinuous Galerkin methods, centered fluxes, leap-frog time scheme, $L^2$ stability, unstructured meshes, absorbing boundary condition, convergence, divergence preservation

Fezoui, Loula  ; Lanteri, Stéphane  ; Lohrengel, Stéphanie 1 ; Piperno, Serge 

1 Dieudonné Lab., UNSA, UMR CNRS 6621, Parc Valrose, 06108 Nice Cedex 2, France.
@article{M2AN_2005__39_6_1149_0,
     author = {Fezoui, Loula and Lanteri, St\'ephane and Lohrengel, St\'ephanie and Piperno, Serge},
     title = {Convergence and stability of a discontinuous {Galerkin} time-domain method for the {3D} heterogeneous {Maxwell} equations on unstructured meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1149--1176},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {6},
     year = {2005},
     doi = {10.1051/m2an:2005049},
     mrnumber = {2195908},
     zbl = {1094.78008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005049/}
}
TY  - JOUR
AU  - Fezoui, Loula
AU  - Lanteri, Stéphane
AU  - Lohrengel, Stéphanie
AU  - Piperno, Serge
TI  - Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2005
SP  - 1149
EP  - 1176
VL  - 39
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005049/
DO  - 10.1051/m2an:2005049
LA  - en
ID  - M2AN_2005__39_6_1149_0
ER  - 
%0 Journal Article
%A Fezoui, Loula
%A Lanteri, Stéphane
%A Lohrengel, Stéphanie
%A Piperno, Serge
%T Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2005
%P 1149-1176
%V 39
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005049/
%R 10.1051/m2an:2005049
%G en
%F M2AN_2005__39_6_1149_0
Fezoui, Loula; Lanteri, Stéphane; Lohrengel, Stéphanie; Piperno, Serge. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 6, pp. 1149-1176. doi: 10.1051/m2an:2005049

Cité par Sources :