Voir la notice de l'article provenant de la source Numdam
This article discusses the numerical approximation of time dependent Ginzburg-Landau equations. Optimal error estimates which are robust with respect to a large Ginzburg-Landau parameter are established for a semi-discrete in time and a fully discrete approximation scheme. The proofs rely on an asymptotic expansion of the exact solution and a stability result for degree-one Ginzburg-Landau vortices. The error bounds prove that degree-one vortices can be approximated robustly while unstable higher degree vortices are critical.
@article{M2AN_2005__39_5_863_0, author = {Bartels, S\"oren}, title = {Robust a priori error analysis for the approximation of degree-one {Ginzburg-Landau} vortices}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {863--882}, publisher = {EDP-Sciences}, volume = {39}, number = {5}, year = {2005}, doi = {10.1051/m2an:2005038}, mrnumber = {2178565}, zbl = {1078.35006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005038/} }
TY - JOUR AU - Bartels, Sören TI - Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 863 EP - 882 VL - 39 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005038/ DO - 10.1051/m2an:2005038 LA - en ID - M2AN_2005__39_5_863_0 ER -
%0 Journal Article %A Bartels, Sören %T Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 863-882 %V 39 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005038/ %R 10.1051/m2an:2005038 %G en %F M2AN_2005__39_5_863_0
Bartels, Sören. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 5, pp. 863-882. doi: 10.1051/m2an:2005038
Cité par Sources :