Generalized Newton methods for the 2D-Signorini contact problem with friction in function space
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 4, pp. 827-854

Voir la notice de l'article provenant de la source Numdam

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented lagrangians allows to apply an infinite-dimensional semi-smooth Newton method for the solution of the problem with given friction. The resulting algorithm is locally superlinearly convergent and can be interpreted as active set strategy. Combining the method with an augmented lagrangian method leads to convergence of the iterates to the solution of the original problem. Comprehensive numerical tests discuss, among others, the dependence of the algorithm's performance on material and regularization parameters and on the mesh. The remarkable efficiency of the method carries over to the Signorini problem with Coulomb friction by means of fixed point ideas.

DOI : 10.1051/m2an:2005036
Classification : 49M05, 49M29, 74M10, 74M15, 74B05
Keywords: Signorini contact problems, Coulomb and Tresca friction, linear elasticity, semi-smooth Newton method, Fenchel dual, augmented lagrangians, complementarity system, active sets
@article{M2AN_2005__39_4_827_0,
     author = {Kunisch, Karl and Stadler, Georg},
     title = {Generalized {Newton} methods for the {2D-Signorini} contact problem with friction in function space},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {827--854},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {4},
     year = {2005},
     doi = {10.1051/m2an:2005036},
     mrnumber = {2165681},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005036/}
}
TY  - JOUR
AU  - Kunisch, Karl
AU  - Stadler, Georg
TI  - Generalized Newton methods for the 2D-Signorini contact problem with friction in function space
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2005
SP  - 827
EP  - 854
VL  - 39
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005036/
DO  - 10.1051/m2an:2005036
LA  - en
ID  - M2AN_2005__39_4_827_0
ER  - 
%0 Journal Article
%A Kunisch, Karl
%A Stadler, Georg
%T Generalized Newton methods for the 2D-Signorini contact problem with friction in function space
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2005
%P 827-854
%V 39
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005036/
%R 10.1051/m2an:2005036
%G en
%F M2AN_2005__39_4_827_0
Kunisch, Karl; Stadler, Georg. Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 4, pp. 827-854. doi: 10.1051/m2an:2005036

Cité par Sources :