Voir la notice de l'article provenant de la source Numdam
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the origin. We show numerical evidence of the convergence of the method.
@article{M2AN_2005__39_4_781_0, author = {Merlet, Benoit and Pierre, Morgan}, title = {Moving mesh for the axisymmetric harmonic map flow}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {781--796}, publisher = {EDP-Sciences}, volume = {39}, number = {4}, year = {2005}, doi = {10.1051/m2an:2005034}, mrnumber = {2165679}, zbl = {1078.35008}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005034/} }
TY - JOUR AU - Merlet, Benoit AU - Pierre, Morgan TI - Moving mesh for the axisymmetric harmonic map flow JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 781 EP - 796 VL - 39 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005034/ DO - 10.1051/m2an:2005034 LA - en ID - M2AN_2005__39_4_781_0 ER -
%0 Journal Article %A Merlet, Benoit %A Pierre, Morgan %T Moving mesh for the axisymmetric harmonic map flow %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 781-796 %V 39 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005034/ %R 10.1051/m2an:2005034 %G en %F M2AN_2005__39_4_781_0
Merlet, Benoit; Pierre, Morgan. Moving mesh for the axisymmetric harmonic map flow. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 4, pp. 781-796. doi: 10.1051/m2an:2005034
Cité par Sources :