Voir la notice de l'article provenant de la source Numdam
In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration is independent of the mesh size. Besides, a combination between this method and the steepest descent method is also discussed.
@article{M2AN_2005__39_4_715_0, author = {Hu, Qiya and Yu, Dehao}, title = {Iteratively solving a kind of {Signorini} transmission problem in a unbounded domain}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {715--726}, publisher = {EDP-Sciences}, volume = {39}, number = {4}, year = {2005}, doi = {10.1051/m2an:2005031}, mrnumber = {2165676}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005031/} }
TY - JOUR AU - Hu, Qiya AU - Yu, Dehao TI - Iteratively solving a kind of Signorini transmission problem in a unbounded domain JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 715 EP - 726 VL - 39 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005031/ DO - 10.1051/m2an:2005031 LA - en ID - M2AN_2005__39_4_715_0 ER -
%0 Journal Article %A Hu, Qiya %A Yu, Dehao %T Iteratively solving a kind of Signorini transmission problem in a unbounded domain %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 715-726 %V 39 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005031/ %R 10.1051/m2an:2005031 %G en %F M2AN_2005__39_4_715_0
Hu, Qiya; Yu, Dehao. Iteratively solving a kind of Signorini transmission problem in a unbounded domain. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 4, pp. 715-726. doi: 10.1051/m2an:2005031
Cité par Sources :