Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 1, pp. 183-221

Voir la notice de l'article provenant de la source Numdam

We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, e i|u -v | 4πi|u -v |, which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices L. We prove that if v=|v | is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies L+1 2v+CW 2 3 (K(α)ϵ -δ v γ )v 1 3 where W is the Lambert function, K(α) depends only on α=|u | |v | and C,δ,γ are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates of the error in the fast multipole method for scattering computation.

DOI : 10.1051/m2an:2005008
Classification : 33C10, 33C55, 41A80
Keywords: Gegenbauer, fast multipole method, truncation error
@article{M2AN_2005__39_1_183_0,
     author = {Carayol, Quentin and Collino, Francis},
     title = {Error estimates in the fast multipole method for scattering problems. {Part} 2 : truncation of the {Gegenbauer} series},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {183--221},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/m2an:2005008},
     mrnumber = {2136205},
     zbl = {1087.33007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005008/}
}
TY  - JOUR
AU  - Carayol, Quentin
AU  - Collino, Francis
TI  - Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2005
SP  - 183
EP  - 221
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005008/
DO  - 10.1051/m2an:2005008
LA  - en
ID  - M2AN_2005__39_1_183_0
ER  - 
%0 Journal Article
%A Carayol, Quentin
%A Collino, Francis
%T Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2005
%P 183-221
%V 39
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005008/
%R 10.1051/m2an:2005008
%G en
%F M2AN_2005__39_1_183_0
Carayol, Quentin; Collino, Francis. Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 1, pp. 183-221. doi: 10.1051/m2an:2005008

Cité par Sources :