Voir la notice de l'article provenant de la source Numdam
In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying . We prove the global in time existence and the uniqueness of the classical solution for this fluid-structure problem. The proof relies mainly on weighted estimates for the vorticity associated with the strong solution of a fluid-structure problem obtained by incorporating some dissipation.
@article{M2AN_2005__39_1_79_0, author = {Ortega, Jaime H. and Rosier, Lionel and Takahashi, Tak\'eo}, title = {Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {79--108}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/m2an:2005002}, mrnumber = {2136201}, zbl = {1087.35081}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005002/} }
TY - JOUR AU - Ortega, Jaime H. AU - Rosier, Lionel AU - Takahashi, Takéo TI - Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 79 EP - 108 VL - 39 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005002/ DO - 10.1051/m2an:2005002 LA - en ID - M2AN_2005__39_1_79_0 ER -
%0 Journal Article %A Ortega, Jaime H. %A Rosier, Lionel %A Takahashi, Takéo %T Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 79-108 %V 39 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2005002/ %R 10.1051/m2an:2005002 %G en %F M2AN_2005__39_1_79_0
Ortega, Jaime H.; Rosier, Lionel; Takahashi, Takéo. Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 1, pp. 79-108. doi: 10.1051/m2an:2005002
Cité par Sources :