On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 5, pp. 821-852

Voir la notice de l'article provenant de la source Numdam

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360-373]. Next, this general theory is applied to obtain well-balanced schemes for solving coupled systems of conservation laws with source terms. Finally, we focus on applications to shallow water systems: the numerical schemes obtained and their properties are compared, in the case of one layer flows, with those introduced by [Bermúdez and Vázquez-Cendón, Comput. Fluids 23 (1994) 1049-1071]; in the case of two layer flows, they are compared with the numerical scheme presented by [Castro, Macías and Parés, ESAIM: M2AN 35 (2001) 107-127].

DOI : 10.1051/m2an:2004041
Classification : 65M99, 76B55, 76B70
Keywords: nonconservative hyperbolic systems, well-balanced schemes, Roe method, source terms, shallow-water systems
@article{M2AN_2004__38_5_821_0,
     author = {Par\'es, Carlos and Castro D{\'\i}az, Manuel Jes\'us},
     title = {On the well-balance property of {Roe's} method for nonconservative hyperbolic systems. {Applications} to shallow-water systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {821--852},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {5},
     year = {2004},
     doi = {10.1051/m2an:2004041},
     zbl = {1130.76325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004041/}
}
TY  - JOUR
AU  - Parés, Carlos
AU  - Castro Díaz, Manuel Jesús
TI  - On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2004
SP  - 821
EP  - 852
VL  - 38
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004041/
DO  - 10.1051/m2an:2004041
LA  - en
ID  - M2AN_2004__38_5_821_0
ER  - 
%0 Journal Article
%A Parés, Carlos
%A Castro Díaz, Manuel Jesús
%T On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2004
%P 821-852
%V 38
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004041/
%R 10.1051/m2an:2004041
%G en
%F M2AN_2004__38_5_821_0
Parés, Carlos; Castro Díaz, Manuel Jesús. On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 5, pp. 821-852. doi: 10.1051/m2an:2004041

Cité par Sources :